Oil-source correlation study of the Paleogene red beds in the Boxing sag of the Dongying depression, eastern China

Ying Wang¹,², Luofu Liu¹,²,*, Jianghui Meng¹,², Zhenxue Jiang¹,², Yongjin Gao³, and Shuhui Liu³

¹State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
²Basin and Reservoir Research Center, China University of Petroleum (Beijing), Beijing 102249, China.
³Research Institute of Geological Science, Shengli Oilfield Company Limited, Dongying Shandong 257015, China.
*liulf@cup.edu.cn

ABSTRACT

We present a correlation study of the oil occurrence in the Paleogene red beds of the Boxing sag of the Dongying depression, eastern China. The reservoir includes the lower 4th Member of the Shahejie Formation (Es₄₁) and 1st Member of the Kongdian Formation (Ek₁). Sixteen source rock samples and 17 oil sand samples from the Boxing sag were collected and the biomarkers were analyzed to perform oil-source correlation. The results show that three oil types characterize the petroleum stored in the Paleogene red beds of the Boxing sag. The oil in Es₄₁ is classified as Type A oil and is derived from the Es₃₁ (lower 3rd Member of the Shahejie Formation) source rock, which was deposited in a freshwater-brackish lacustrine environment. The oil in Ek₁ of the eastern sag (well Bo-8) is originated from the Es₄ᵤ (upper 4th Member of the Shahejie Formation) source rock, characterized by saline-hypersaline lacustrine environment, and classified as Type B oil. The oil within Ek₁ is a mixture of oil generated from both Es₃₁ and Es₄ᵤ source rocks and classified as Type C oil. The distribution of the different oil types in the Paleogene red beds in the Boxing sag is controlled by faults that connect the source rocks with the reservoir bed, which are here named “oil-source faults”. The Paleogene red beds in the footwall blocks of these “oil-source faults” are the most promising oil and gas exploration target.

Key words: source rock, oil-source correlation, red beds, Boxing sag, Dongying depression, China.

RESUMEN

Presentamos un estudio de correlación de la presencia de petróleo en los lechos rojos del Paleógeno de la cuenca intracratónica (sag) Boxing en la depresión Dongying, este de China. El yacimiento incluye el cuarto miembro inferior de la Formación Shahejie (Es₁) y primer miembro de la Formación Kongdian (Ek₁). Se colectaron 16 muestras de roca fuente y 17 muestras de arena bituminosa de la cuenca Boxing y se analizaron los biomarcadores para establecer la correlación petróleo-fuente. Los resultados muestran que tres tipos de aceites caracterizan el petróleo almacenado en los lechos rojos del Paleógeno de la cuenca Boxing. El aceite en Es₁ se clasifica como aceite del Tipo A y se deriva de roca fuente Es₁ (tercer miembro inferior de la Formación Shahejie), la cual fue depositada en un ambiente lacustre de agua dulce-salobre. El aceite en Ek₁, de la porción oriental de la cuenca (pozo Bo-8) se origina de roca fuente Es₄ᵤ (cuarto miembro superior de la Formación Shahejie), caracterizada por un ambiente lacustre salino-hipersalino, y clasificado como aceite del Tipo B. El aceite en Ek₁, es una mezcla de aceite generado de las roca fuente Es₁ y Es₄ᵤ y se clasifica como aceite del Tipo C. La distribución de los diferentes tipos
INTRODUCTION

The Dongying Depression is located in the south of the Bohai Bay basin (Figure 1) and has the most abundant oil and gas resources in the eastern China (Sun et al., 2006; Qiu et al., 2010). In the last 40 years, the petroleum exploration of the Dongying depression has been focused on the shallow Eocene Shahejie Formation. However, with the decreasing exploitation potential of former strata, the Paleogene red beds becomes the potential reservoir bed in the Dongying depression, where several wells with commercial oil production have been drilled since 2008.

The Paleogene red beds in the Dongying depression refers to the local deep Eocene strata –lower 4th Member of the Shahejie Formation (Es₄l) and 1st Member of the Kongdian Formation (Ek₁). They consist of a series of continental clastic strata that show red color due to the oxidizing depositional environment. Since this is a new petroleum exploration target, the study on the source of the oil stored in the Paleogene red beds (red-bed oil) can directly help to understand the oil and gas accumulation pattern, as well as to understand the distribution of potential oil reservoirs in the Dongying depression.

Many earlier studies (Li et al., 2003, 2005, 2010; Zhang et al., 2003a, 2003b; Zhu and Jin, 2003; Zhang et al., 2004; Zhu et al., 2004, 2005; Pang et al., 2005; Liu, et al., 2006; Wang, et al., 2008; Meng et al., 2010, 2011) have demonstrated that there are two main source rocks in the Dongying depression: the lower 3rd and the upper 4th Members of the Eocene Shahejie Formation (Es₃l and Es₄u), respectively, and that oils from the Dongying depression are all associated to these two source rocks. However, scarce research has been conducted on the source of the red-bed oil in the Dongying depression, especially in the Boxing sag, a fact that hinder oil and gas exploration. As one of the main sags in the Dongying depression,

Figure 1. Geological location, and sample distribution, of the Boxing sag in the Dongying depression, eastern China.
the Boxing sag was chosen as a case to study the source of Paleogene red-bed oil in the Dongying depression by means of oil-source correlation according to biomarker signatures.

GEOLOGICAL SETTING

The Boxing sag is located in the southwestern portion of the Dongying depression, in the southern Bohai Bay basin, eastern China (Figure 1). According to the seismic and logging data, the study area is divided into four step-fault zones by three main normal faults with east-west strike, which were active at the time the Paleogene strata were deposited, namely Gaoqing-Pingnan, Gao89 and Jin32-Boxing faults, and the major part of Boxing sag is to the south of the Gaoqing-Pingnan fault (Figure 1). The Paleogene strata in the Boxing sag are represented from bottom to top by the Kongdian, Shahejie and Dongying formations (Figure 2). There are four source rocks in the Boxing area, namely Es₁ (1st Member of the Shahejie Formation), Es₃ᵐ (middle 3rd Member of the Shahejie Formation), Es₁ and Es₄. The two main source rocks are Es₁ and Es₄ shale, most of which were deposited in a semi-deep to deep lacustrine basin and the rest in a shallow lacustrine basin (Rong and Wang, 2004; Yang and Chen, 2004; Su et al., 2005; Xu and Wu, 2011). The Paleogene red beds (Es₁ and Ek₁) are the favorable as well as the potential reservoir bed. Two regionally extensive units represent the cap rock: the thick Ed₃-Es₁ (3rd Member of the Dongying Formation and 1st Member of the Shahejie Formation) and the Es₃-Es₄ dark mudstone. The study on the source of Paleogene red-bed oil in the Boxing sag has

<table>
<thead>
<tr>
<th>System</th>
<th>Series</th>
<th>Formation</th>
<th>Member</th>
<th>Symbol</th>
<th>Lithologic profile</th>
<th>Depositional environment</th>
<th>Source rocks</th>
<th>Reservoir beds</th>
<th>Cap rocks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dongying</td>
<td>1st</td>
<td>Ed₁</td>
<td></td>
<td>Fluvial delta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2nd</td>
<td>Ed₂</td>
<td></td>
<td>Lake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3rd</td>
<td>Ed₃</td>
<td></td>
<td>Semi-deep to deep lake, delta, shallow lake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oligocene</td>
<td>1st</td>
<td>Es₁</td>
<td></td>
<td>Lake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2nd</td>
<td>Es₂</td>
<td></td>
<td>Semi-deep to deep lake, delta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3rd</td>
<td>Es₃</td>
<td></td>
<td>Semi-deep to deep lake, delta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4th</td>
<td>Es₄</td>
<td></td>
<td>Semi-deep to deep lake, shallow lake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eocene</td>
<td>1st</td>
<td>Ek₁</td>
<td></td>
<td>Fluvial plain, shallow lake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2nd</td>
<td>Ek₂</td>
<td></td>
<td>Shallow lake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3rd</td>
<td>Ek₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Paleogene stratigraphy in the Boxing sag of the Dongying depression, eastern China (according to the Research Institute of Geological Science, Shengli Oilfield Company Limited, 2000, 2007).
important geological significance for further oil and gas exploration in the Boxing area.

SAMPLES AND EXPERIMENTAL METHODS

In this research, 16 source rock samples and 13 oil sand samples were collected from Es 3, Es 4, and Ek 1 in the Boxing sag of the Dongying depression. Sampled wells are representative for the whole study area (Figure 1).

The oils were extracted from oil sand samples with chloroform (CHCl 3) for 24 hours under room temperature and the soluble organic matter were extracted from powdered source rock samples with chloroform in a Soxhlet apparatus for 72 hours. After solvent removal by rotary evaporation, the oils or rock extracts were further treated with chloroform for 12 hours under room temperature to precipitate asphaltenes. The filtrates were subsequently fractionated by using column chromatography (silica gel/alumina, 3:1) into saturated and aromatic hydrocarbons, and non-hydrocarbons. The used elution solvents were hexane, dichloromethane-hexane (7:3) and chloroform-methanol (1:1), sequentially (Wang et al., 2010). The saturated hydrocarbons of oils or rock extracts were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS).

Gas chromatography (GC) analysis was performed on the saturated hydrocarbon fraction of Es 3 and are described in the following section.

Biomarker Signatures and Depositional Environment of Source Rocks in the Boxing Sag

The signatures of biomarkers of 16 samples from Es 3 and Es 4 source rocks are summarized in Table 1 and Figure 3 and are described in the following section.

Table 1. Biomarker parameters of Es 3 and Es 4 source rocks in the Boxing sag of the Dongying depression, eastern China.

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Well</th>
<th>Depth (m)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es 3 source rock</td>
<td>Fan-118</td>
<td>3032.20</td>
<td>22</td>
<td>1.22</td>
<td>0.47</td>
<td>0.37</td>
<td>1.07</td>
<td>0.03</td>
<td>0.12</td>
<td>5.42</td>
<td>0.72</td>
<td>0.39</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Liang-219</td>
<td>3009.00</td>
<td>25</td>
<td>1.05</td>
<td>0.63</td>
<td>0.60</td>
<td>1.01</td>
<td>0.07</td>
<td>0.20</td>
<td>6.25</td>
<td>0.91</td>
<td>0.30</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Fan-137</td>
<td>2851.85</td>
<td>23</td>
<td>1.28</td>
<td>0.63</td>
<td>0.46</td>
<td>1.15</td>
<td>0.02</td>
<td>0.11</td>
<td>7.15</td>
<td>1.41</td>
<td>0.41</td>
<td>0.15</td>
</tr>
<tr>
<td>Type 1 Es 4 source rock</td>
<td>Fan-137</td>
<td>3214.50</td>
<td>23</td>
<td>0.30</td>
<td>1.57</td>
<td>4.81</td>
<td>1.10</td>
<td>0.79</td>
<td>5.03</td>
<td>9.09</td>
<td>1.41</td>
<td>0.39</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Fan-143</td>
<td>3112.00</td>
<td>25</td>
<td>1.27</td>
<td>1.95</td>
<td>1.52</td>
<td>1.26</td>
<td>0.35</td>
<td>1.40</td>
<td>3.75</td>
<td>0.81</td>
<td>0.41</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Fan-138</td>
<td>3072.90</td>
<td>25</td>
<td>0.74</td>
<td>2.33</td>
<td>2.83</td>
<td>1.16</td>
<td>0.69</td>
<td>3.77</td>
<td>6.60</td>
<td>0.29</td>
<td>0.40</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Gao-89</td>
<td>3016.50</td>
<td>23</td>
<td>0.48</td>
<td>1.28</td>
<td>2.56</td>
<td>1.19</td>
<td>0.13</td>
<td>0.81</td>
<td>4.29</td>
<td>0.50</td>
<td>0.42</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Gao-891</td>
<td>2813.00</td>
<td>23</td>
<td>0.94</td>
<td>1.72</td>
<td>1.71</td>
<td>1.32</td>
<td>0.07</td>
<td>0.62</td>
<td>5.25</td>
<td>0.81</td>
<td>0.35</td>
<td>0.13</td>
</tr>
<tr>
<td>Type 2 Es 4 source rock</td>
<td>Fan-216</td>
<td>3064.20</td>
<td>20</td>
<td>0.37</td>
<td>1.01</td>
<td>2.13</td>
<td>0.94</td>
<td>0.19</td>
<td>1.55</td>
<td>8.24</td>
<td>0.55</td>
<td>0.39</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Liang-212</td>
<td>2684.80</td>
<td>24</td>
<td>0.36</td>
<td>2.99</td>
<td>6.50</td>
<td>0.78</td>
<td>0.05</td>
<td>2.10</td>
<td>21.41</td>
<td>0.96</td>
<td>0.30</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Gao-80</td>
<td>2610.00</td>
<td>25</td>
<td>0.37</td>
<td>1.54</td>
<td>3.40</td>
<td>1.10</td>
<td>0.14</td>
<td>1.16</td>
<td>7.49</td>
<td>0.69</td>
<td>0.26</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Gao-31</td>
<td>2501.26</td>
<td>18</td>
<td>0.32</td>
<td>0.70</td>
<td>1.59</td>
<td>0.84</td>
<td>0.09</td>
<td>8.10</td>
<td>10.07</td>
<td>1.31</td>
<td>0.25</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Gao-351</td>
<td>2440.15</td>
<td>14</td>
<td>0.25</td>
<td>2.01</td>
<td>7.04</td>
<td>1.26</td>
<td>0.14</td>
<td>1.99</td>
<td>4.84</td>
<td>0.88</td>
<td>0.18</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Fan-127</td>
<td>2391.60</td>
<td>25</td>
<td>0.47</td>
<td>1.46</td>
<td>3.19</td>
<td>1.02</td>
<td>0.07</td>
<td>3.78</td>
<td>7.49</td>
<td>0.62</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Gao-38</td>
<td>2396.66</td>
<td>16</td>
<td>0.36</td>
<td>1.60</td>
<td>3.72</td>
<td>1.11</td>
<td>0.07</td>
<td>0.37</td>
<td>7.08</td>
<td>0.35</td>
<td>0.17</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Bo-104</td>
<td>2153.30</td>
<td>17</td>
<td>0.16</td>
<td>2.46</td>
<td>24.85</td>
<td>1.59</td>
<td>0.08</td>
<td>2.99</td>
<td>3.50</td>
<td>0.63</td>
<td>0.11</td>
<td>0.02</td>
</tr>
</tbody>
</table>

1. Peak of n-alkanes; 2. Pr/Ph; 3. Pr+n-C 17 ; 4. Ph/n-C 17 ; 5. CPI= [(n-C 24 + n-C 25 + n-C 26 + n-C 27 + n-C 28) / (n-C 24 + n-C 25 + n-C 26 + n-C 27 + n-C 28 + n-C 29 + n-C 30)] / 2; 6. tricyclic terpanes/17α-hopanes; 7. gammacerane/C 35 homohopane = gammacerane / (22S 17α, 21β-homohopane + 22R 17α, 21β-homohopane); 8. C 35 homohopane index = 100 × 17α, 21β-pentahomohopane / (22S 17α, 21β-homohopane + 22R 17α, 21β-homohopane); 9. C 35 /C 30 sterane = 20R 5α, 14α, 17α-cholestan / 20R 24-ethyl-5α, 14α, 17α-cholestan; 10. aα-C 27 sterane = 20S 20R = 20S 24-ethyl-5α, 14α, 17α-cholestan / (20S 24-ethyl-5α, 14α, 17α-cholestan) aα-20R; 11. diasteranes/regular steranes.
Oil-source correlation study of the Paleogene red beds, Boxing sag

Es₁ source rock

The n-alkanes show Gaussian distribution or weak double peak pattern and the peak is between n-C₂₂–n-C₂₅, carbon preference index (CPI) is 1.01–1.15 (Table 1). For example, the sample from well Fan-118 shows weak double peak pattern and n-C₂₂, as the peak of n-alkanes (Figure 3a). The concentration of pristane is higher than that of phytane (Pr/Ph > 1), Pr/n-C₁₇ is lower than 0.63 and Ph/n-C₁₈ is lower than 0.6 (Table 1, Figure 3a).

Concentrations of tricyclic terpanes and gammacerane are very low, with tricyclic terpanes/17α-hopanes lower than 0.07 and gammacerane/C₃₁ homohopane lower than 0.20 (Table 1, Figure 3b). The C₃₁ homohopane index is between 5.42% and 7.15% (Table 1).

The ααα-20R C₂₇/C₂₉ sterane is 0.72–1.41, ααα-20R C₂₈ sterane shows lower concentration than that of ααα-20R C₂₇ and C₂₉ steranes, and the concentration 4-methyl steranes is very high (Table 1, Figure 3c).

Es₄ source rock

The Es₄ source rock can be subdivided into two types according to the relative distribution of n-alkanes (Table 1, Figure 3a): Type 1 Es₄ source rock extracts show Gaussian distribution centered between n-C₂₃–n-C₂₅ (e.g., well Gao-891, peak of n-alkanes is n-C₂₃); Type 2 Es₄ source rock extracts show double peak pattern, namely n-C₁₄–n-C₁₈ or n-C₂₀–n-C₂₅ (e.g., well Gao-351, peak of n-alkanes is n-C₁₄).

The CPI is higher than 1 except for three samples (CPI = 0.78–1.32; Table 1). Pr/Ph is lower than 1 except for one sample, Pr/n-C₁₇ is higher than 1 except for one sample, and Ph/n-C₁₈ is higher 1.52 (Table 1, Figure 3a).

Concentration of tricyclic terpanes and gammacerane are higher than those of Es₁ source rock samples (tricyclic terpanes/17α-hopanes = 0.05–0.79, gammacerane/C₃₁ homohopane = 0.37–8.1). The C₃₁ homohopane index is between 3.50% and 21.41%, half of which is bigger than that of the Es₁ source rock samples (Table 1, Figure 3b).

Like the Es₁ source rock samples, ααα-20R C₂₈ sterane of Es₄ source rock samples also shows obviously lower concentration compared to that of ααα-20R C₂₇ and C₂₉ steranes, and the ratio of ααα-20R C₂₇/C₂₉ sterane is lower than 1 except for two samples (0.29–1.41). Unlike to the Es₁ source rock samples, the concentration of 4-methyl steranes of Es₄ source rock samples is very low (Table 1, Figure 3c).

Depositional environments of Es₁ and Es₄ source rocks

Previous studies indicated that the main source rocks of the Boxing sag are Es₁ (fresh-brackish or brackish lake) and Es₄ (brackish-saline or saline lake) shales (Yang and Chen, 2004; Su et al., 2005; Han et al., 2007). However, these studies were based on few samples and their conclusions about the depositional environments of the two source rocks in the Boxing sag were essentially deduced from more general studies of the Dongying depression (e.g., Zhu and Jin, 2003; Zhu et al., 2004, 2005). Thus,
based on the biomarker signatures obtained in this work, the depositional environments of these two source rocks can be refined.

The Es1 source rock has biomarker signatures characterized by a dominance of pristane (Pr/Ph > 1), very low concentrations of tricyclic terpanes and gammacerane, and higher concentration of 4-methyl steranes, which indicates that it was deposited in a freshwater-brackish lacustrine environment (Philp et al. 1989; Wang 1990; Fu et al. 1990, 1991).

The Es4 source rock has a clear phytane (Pr/Ph < 1 and Ph/n-C18 > 1.52) and gammacerane predominance, higher tricyclic terpanes/17α-hopanes ratio, moderately higher C35 homohopane index, and very low concentration of 4-methyl steranes, indicating that it was deposited in a saline-hypersaline lacustrine environment (Philp et al. 1989; Wang 1990; Fu et al. 1990, 1991; Zhang et al. 1998).

Besides, concentration of diasteranes (0.01–0.06) and C29 sterane 20S/(20S+20R) value (0.11–0.39) of the Type 2 Es4 source rock samples are much lower than those of the Es1 source rock samples (0.08–0.23 and 0.30–0.41, respectively; Table 1). Concentration of diasteranes and C29 sterane 20S/(20S+20R) parameter increases with increasing thermal maturity (Seifert and Moldowan, 1978, 1986, respectively). Therefore, these biomarker parameters indicate that Type 2 Es4 source rock samples have lower thermal maturity than the Es1 source rock samples. This is because the Type 2 Es4 source rock samples (except the well Liang-216) have shallower burial depth (2153.50 m–2684.80 m) than that of the Es1 source rock samples (2851.85 m–3032.20 m; Table 1) and the thermal maturity parameter (Ro) of source rock samples from the Dongying depression has a positive relation to the burial depth. Although there are many faults that affect the original burial depth of these samples, these are syn-sedimentary faults, which have not changed the relative burial relationship of these samples.

BIOMARKER SIGNATURES AND CLASSIFICATION OF RED-BED OIL IN THE BOXING SAG

In addition to source rocks, we studied 17 oil sand samples from 12 wells in the Boxing sag. Four samples from wells Bin-169, Liang-120, Chun-26 and Jin-32 only have gas and mass chromatograms but no specific data about concentration of each biomarker could be collected (Table 2, Figure 1). Biomarker signatures of the oil sand samples are summarized and shown in Table 2 and Figures 4 and 5.

The C31 homohopane 22S/(22S+22R) and C29 sterane 20S/(20S+20R) parameters of the oil sand samples are 0.53–0.59 and 0.37–0.52, respectively (Table 2), lower than or reaching the equilibrium values of these two parameters (0.57–0.62, Seifert et al., 1980, and 0.52–0.55, Seifert and Moldowan, 1986, respectively). These two parameters increase with increasing thermal maturity and the equilibrium values indicate that the main phase of oil generation has been reached or exceeded (Peters et al., 2005), which corresponds to the low thermal maturity of the local source rocks (Ro = 0.5%–0.8%).

On the basis of the combined biomarkers characteristics of these oil sand samples, the red-bed oil in the Boxing sag can be divided into three types.

Type A oil

This oil type has n-alkanes with a Gaussian distribution with a n-C22–n-C25 peak, CPI is 1.01–1.10; Pr/Ph is 0.55–0.89, Pr/n-C18 is 0.48–0.93 and Ph/n-C18 is 0.39–0.77 (Table 2, Figure 4a). The concentrations of tricyclic terpanes and gammacerane are low (tricyclic terpanes/17α-hopanes = 0.08–0.24, gammacerane/C31 homohopane = 0.14–0.27), and the C35 homohopane index is low (2.88%–5.65%) (Table 2, Figure 4b). The ααα-20R C25/C29 sterane

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Well</th>
<th>Member</th>
<th>Depth (m)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A oil</td>
<td>Fan-143</td>
<td>Es1</td>
<td>3115.20</td>
<td>25</td>
<td>0.89</td>
<td>0.48</td>
<td>0.51</td>
<td>1.03</td>
<td>0.08</td>
<td>0.14</td>
<td>3.79</td>
<td>0.79</td>
<td>0.40</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Liang-902</td>
<td>Ek1</td>
<td>2532.00</td>
<td>23</td>
<td>0.82</td>
<td>0.47</td>
<td>0.39</td>
<td>1.10</td>
<td>0.08</td>
<td>0.14</td>
<td>4.72</td>
<td>0.92</td>
<td>0.40</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Gao-891</td>
<td>Es4</td>
<td>2804.10</td>
<td>22</td>
<td>0.62</td>
<td>0.64</td>
<td>0.77</td>
<td>1.06</td>
<td>0.22</td>
<td>0.25</td>
<td>2.88</td>
<td>0.94</td>
<td>0.46</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Gao-891</td>
<td>Es4</td>
<td>2808.80</td>
<td>23</td>
<td>0.64</td>
<td>0.55</td>
<td>0.77</td>
<td>1.01</td>
<td>0.08</td>
<td>0.27</td>
<td>5.65</td>
<td>0.84</td>
<td>0.52</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Bin-425</td>
<td>Es4</td>
<td>2607.80</td>
<td>23</td>
<td>0.55</td>
<td>0.93</td>
<td>0.74</td>
<td>1.07</td>
<td>0.24</td>
<td>0.26</td>
<td>3.60</td>
<td>0.90</td>
<td>0.47</td>
<td>0.55</td>
</tr>
<tr>
<td>Type B oil</td>
<td>Bo-8</td>
<td>Ek1</td>
<td>2678.80</td>
<td>16</td>
<td>0.71</td>
<td>0.98</td>
<td>1.55</td>
<td>1.17</td>
<td>0.12</td>
<td>1.66</td>
<td>12.42</td>
<td>1.22</td>
<td>0.42</td>
<td>0.59</td>
</tr>
<tr>
<td>Type C oil</td>
<td>Fanshen-1</td>
<td>Ek1</td>
<td>4056.20</td>
<td>18</td>
<td>1.00</td>
<td>0.86</td>
<td>0.75</td>
<td>1.10</td>
<td>0.64</td>
<td>0.51</td>
<td>5.46</td>
<td>0.95</td>
<td>0.41</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Fanshen-1</td>
<td>Ek1</td>
<td>4057.70</td>
<td>18</td>
<td>0.98</td>
<td>0.88</td>
<td>1.01</td>
<td>1.45</td>
<td>0.85</td>
<td>0.63</td>
<td>5.18</td>
<td>1.04</td>
<td>0.37</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Bin-425</td>
<td>Ek1</td>
<td>2769.50</td>
<td>16</td>
<td>1.06</td>
<td>0.93</td>
<td>0.73</td>
<td>0.93</td>
<td>0.14</td>
<td>0.28</td>
<td>6.94</td>
<td>0.73</td>
<td>0.42</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>Bin-425</td>
<td>Ek1</td>
<td>2700.90</td>
<td>16</td>
<td>0.95</td>
<td>0.89</td>
<td>0.69</td>
<td>1.13</td>
<td>0.22</td>
<td>0.51</td>
<td>6.08</td>
<td>0.88</td>
<td>0.39</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>Chungu-1</td>
<td>Ek1</td>
<td>2313.20</td>
<td>18</td>
<td>0.65</td>
<td>1.54</td>
<td>0.72</td>
<td>1.32</td>
<td>0.68</td>
<td>0.57</td>
<td>6.24</td>
<td>1.05</td>
<td>0.37</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Chungu-1</td>
<td>Ek1</td>
<td>2319.50</td>
<td>16</td>
<td>0.77</td>
<td>0.52</td>
<td>0.69</td>
<td>1.16</td>
<td>0.53</td>
<td>1.03</td>
<td>5.72</td>
<td>0.68</td>
<td>0.37</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Gao-891</td>
<td>Ek1</td>
<td>3234.90</td>
<td>25</td>
<td>0.87</td>
<td>1.01</td>
<td>1.28</td>
<td>1.06</td>
<td>0.33</td>
<td>0.51</td>
<td>6.91</td>
<td>0.85</td>
<td>0.38</td>
<td>0.54</td>
</tr>
</tbody>
</table>

1 to 10 are referred as those in Table 1; 11. C31 homohopane 22S/(22S+22R) = 17α, 21β-homohopane 22S/(22S+22R).
Type A Oil

Well Fan-143, 3115.20 m, Es$_4$

Type B Oil

Well Bo-8, 2678.80 m, Ek$_1$

Type C Oil

Well Gao-891, 3234.90 m, Ek$_1$

Well Bin-425, 2769.50 m, Ek$_1$

Biomarkers

(a) normal alkanes and isoprenoids
(b) terpanes (m/z 191)
(c) steranes (m/z 217)

Figure 4. Gas chromatograms of saturated hydrocarbons (a) and mass chromatograms of terpanes (m/z 191) (b) and steranes (m/z 217) (c) of the Paleogene red-bed oil in the Boxing sag of the Dongying depression, eastern China.

is 0.79–0.94, $\alpha\alpha\alpha$-20R C$_{28}$ sterane shows notable lower concentration than that of $\alpha\alpha\alpha$-20R C$_{27}$ and C$_{29}$ steranes, and diasteranes and 4-methyl steranes concentrations are very high (Table 2, Figure 4c).

Type B Oil

This oil type is only found in well Bo-8. The n-alkanes display a double peak pattern with n-C$_{16}$ as the main peak, CPI is 1.17; Pr/Ph is 0.71, Pr/n-C$_{17}$ is 0.98 and Ph/n-C$_{18}$ is 1.55 (Table 2, Figure 4a). The concentration of gammacerane and the C$_{35}$ homohopane index is 12.42%, tricyclic terpanes/17α-hopanes is 0.12 (Table 2, Figure 4b). The $\alpha\alpha\alpha$-20R C$_{27}$/C$_{29}$ sterane is 1.22, $\alpha\alpha\alpha$-20R C$_{28}$ sterane shows a significant lower concentration than that of $\alpha\alpha\alpha$-20R C$_{27}$ and C$_{29}$ steranes (Table 2, Figure 4c). Diasteranes show less concentration than that of Type A oil, and 4-methyl steranes are present in low concentration (Figure 4c).

Type C Oil

In this oil type, the n-alkanes show a weak double peak pattern: sample from well Gao-891 plot mainly in the right part with n-C$_{25}$ as the main peak (Figure 4a), whereas

Figure 5. Biomarker scatter plots showing the classification of the Paleogene red-bed oil in the Boxing sag of the Dongying depression, eastern China.
the sample from well Bin-425 plot mostly in the left part with \(n-C_{16}\) as the main peak (Table 2, Figure 4a). CPI is 0.93–1.45, Pr/Ph is 0.93–1.45, Pr/\(n-C_{17}\) is 0.52–1.54 and Ph/\(n-C_{18}\) is 0.69–1.01 (Table 2). Tricyclic terpanes/17α-hopanes is 0.14–0.85, gammacerane/C\(_{31}\) homohopanes is 0.28–1.03, C\(_{35}\) homohopane index is 5.18%–6.94% (Table 2, Figure 4b). The \(aaa\)-20R C\(_{27}/C_{29}\) sterane is 0.68–1.04 (Table 2), \(aaa\)-20R C\(_{28}\) sterane shows a lower concentration than that of \(aaa\)-20R C\(_{27}\) and C\(_{29}\) steranes, and a medium concentration of diasteranes and 4-methy steranes (Table 2, Figure 4c). In summary, the values of biomarker parameters of Type C oil are intermediate between those of Type A and Type B oils (Table 2).

Four of the biomarker parameters, namely Pr/Ph, gammacerane/C\(_{31}\) homohopane, tricyclic terpanes/17α-hopanes and C\(_{35}\) homohopane index, are very useful to study the redox conditions and salinity of lacustrine environments, and were chosen to illustrate the classification of the Paleogene red-bed oil in the Boxing sag (Figure 5). In the biomarker scatter plots of Figure 5, the three types of red-bed oil can be clearly distinguished.

DISCUSSION

Type A oil includes the samples listed in Table 2 and the sample from well Bin-169 shown in Figure 6. Due to the common biomarker signatures, such as pristane predominance (Pr/Ph > 1), very low concentrations of tricyclic terpanes and gammacerane, relatively low C\(_{35}\) homohopane index, and high concentrations of diasteranes and 4-methy steranes, we consider that Type A oil (e.g., sample from well Fan-143, 3115.20 m) is derived from Es\(_{3}^{\text{l}}\) source rock (e.g., sample from well Fan-118, 3032.20 m; Figures 3 and 4).

Only the sample from well Bo-8 is classified as Type B oil. It shows a clear phytane (Pr/Ph < 1, Ph/\(n-C_{18}\) > 1) and gammacerane predominance, relatively higher tricyclic terpanes/17α-hopanes ratio and C\(_{35}\) homohopane index, and very low concentrations of diasteranes and 4-methy steranes. Based on these features we propose that Type B oil (sample from well Bo-8, 2678.80 m) is originated from Type 2 Es\(_{4}^{\text{u}}\) source rock (e.g., sample from well Gao-351, 2440.15 m) (Figures 3 and 4).

Type C oil includes the samples listed in Table 2 and the samples from wells Liang-120, Chun-26 and Jin-32 shown in Figure 6. All the biomarker parameters values of Type C oil are between those of Type A and Type B oils, suggesting that it could be a mixed oil generated from both Es\(_{3}^{\text{l}}\) and Es\(_{4}^{\text{u}}\) source rocks. According to the distribution of \(n\)-alkanes, oil sand sample from well Gao-891 (3234.90 m) is a mixed oil generated from Es\(_{3}^{\text{l}}\) (e.g., sample from well Fan-118, 3032.20 m) and Type 2 Es\(_{4}^{\text{u}}\) (e.g., sample from well Gao-351, 2440.15 m) source rocks (Figures 3 and 4).

Figure 6 shows the distribution of different oil types of the Paleogene red beds in the Boxing sag. The Type A oil occurs within the Es\(_{4}^{\text{l}}\) red beds (except for well Liang-902) in the western part of the basin, mostly in the footwall block of the Gaoqing-Pingnan, Gao 89, and Jin 32 normal faults. The Type B oil is within the Ek\(_{1}\) red beds in the eastern part of the basin, and the Type C oil mainly occurs within the Ek\(_{1}\) red beds in the footwall blocks of other normal faults in the basin (Figure 6).

The results of our oil-source correlation indicate that the red-bed oil essentially move from the source rocks to the overlying strata along the faults. In fact, the red-bed reservoirs are in the footwall blocks and the source rocks in the hangingwall blocks, indicating that the main normal faults of the basin are providing the connection between the two. All found oilfields and collected oil sand samples occur along the faults and mostly in the uplifted blocks. Therefore, the distribution of the Paleogene red-bed oil in the Boxing sag is controlled by these “oil-source faults” and the Paleogene red beds in the footwall blocks are the most promising oil and gas exploration target of the area.

CONCLUSIONS

There are two main source rocks in the Boxing sag: Es\(_{3}^{\text{l}}\) source rock deposited in a freshwater-brackish lacustrine environment and Es\(_{4}^{\text{u}}\) source rock deposited in a saline-hypersaline lacustrine environment.

The oil stored in Paleogene red beds of the Boxing sag
can be divided into three types: the oil in Es1 in the western part of the basin is classified as Type A oil, the oil in Ek in the eastern part of the basin (well Bo-8) is classified as Type B oil, and the oil in Ek in other places in the basin is classified as Type C oil.

The results of oil-source correlation indicates that Type A oil is derived from the Es1 source rock, Type B oil is originated from the Es4 source rock, and Type C oil is a kind of mixed oil generated from both Es1 and Es4 source rocks.

Distribution of the Paleogene red-bed oil in the Boxing sag is controlled by “oil-source faults” and the Paleogene red beds in the footwall blocks are the most promising oil and gas exploration target.

ACKNOWLEDGEMENTS

Many thanks to the Research Institute of Geological Science, Shengli Oilfield Company Limited, especially Kefeng Wu and Zhiyong Liu for helping with sampling, and Guanghua Jia, Dong Tang, Honglei Sun and Dongxu Wang for providing data for this research.

REFERENCES

Research Institute of Geological Science, 2000, Cenozoic comprehensive histogram of DONGYING Depression: Shengli Oilfield Company Limited (internal project sources).
Zhang, Z., Yang, F., Li, D., Fang, C., 1998, Biomarker assemblage...
characteristics of source rocks and associated crude oil in saline lake facies of Cenozoic in China: Acta Sedimentologica Sinica 16, 119-123.

Manuscript received: December 19, 2011
Corrected manuscript received: June 11, 2012
Manuscript accepted: September 4, 2012