MOLLUSK GASTROPODS IN A LOWER CRETACEOUS RUDIST-BEARING FORMATION OF JALISCO, WEST CENTRAL MEXICO

Blanca Estela Buitrón-Sánchez1 and Yolanda López-Tinajero2

ABSTRACT

The outcrops of sedimentary rocks of La Presa, Soyalón de Adentro, Agua Zarca and El Conejo, in the northwest of Tamazula, State of Jalisco, are rich in fauna of rudists, nerineids and caenogastropods which are indicative of Early Cretaceous age (late Aptiam-early Albian) and are characteristic of shallow waters of the tropical regions.

The studied gastropods correspond to the species Microchica (Cloughtonia) scalarii (Conrad), Mesoglaucosa (Mesoglaucosa) burnii (Stanton), Gymnentome (Gymnentome) zebra (Gabb), Pyrazas (Echinobatrach.) valeriae (Verneuil and Lortière), Lunatia pedernalis (Roemer), Natica conradi (Hill), Aptyxilla boehmiblankenhorn, Multiptyxys prefeurulai (Delpey), Cossmannea (Eunerinea) hicolori (Cragin), Phaneropyxis anguilina (Bárca and Castillo) and Peruviaella gerthi Olsson, all of which are described for the first time in Tamazula.

The knowledge of the fauna of Tamazula allowed to establish paleobiogeographic relations with similar faunas of other Mexican regions, south of the United States, Peru, Brazil, Spain, Syria, Lebanon and Algeria, in order to provide evidences on the western limits of the Caribbean province of the Tethys realm.

Key words: Gastropods, Lower Cretaceous, Jalisco, west central Mexico.

RESUMEN

Los afloramientos de rocas sedimentarias de La Presa, Soyalón de Adentro, Agua Zarca y El Conejo, al noroeste de Tamazula, en el Estado de Jalisco, son ricos en fauna de rudistas, gasterópodos nerineidos y caenogastropodos, indicadores del Cretácico Temprano (Aptierno-Albierno temprano) y características de mares someros de regiones tropicales.

Los gasterópodos estudiados corresponden a las especies Microchica (Cloughtonia) scalarii (Conrad), Mesoglaucosa (Mesoglaucosa) burnii (Stanton), Gymnentoma (Gymnentoma) zebra (Gabb), Pyrazas (Echinobatrach.) valeriae (Verneuil y Lortière), Lunatia pedernalis (Roemer), Natica conradi (Hill), Aptyxilla boehmiblankenhorn, Multiptyxys prefeurulai (Delpey), Cossmannea (Eunerinea) hicolori (Cragin), Phaneropyxis anguilina (Bárca y Castillo) y Peruviaella gerthi Olsson (Roemer), que son descritos por primera vez para la región de Tamazula.

Con el conocimiento de la fauna de Tamazula, se procedió a establecer relaciones paleobiogeográficas con faunas similares de otras regiones de México, del sur de los Estados Unidos, de Perú, Brasil, España, Siria, Líbano y Argelia, con la finalidad de aportar evidencias sobre los límites occidentales de la provincia Caribeña en el dominio del Téthys.

Palabras clave: Gasterópodos, Cretácico Inferior, Jalisco, centro-occidente de México.

INTRODUCTION

Early Cretaceous marine fossils are practically unknown in west central Mexico. Nevertheless, in the vicinity of Tamazula, located to the southeast of the State of Jalisco, there is a particularly interesting area where numerous species and genera of bivalves and gastropods, and also several taxa of corals and echinoids, have been found. This association represents a shallow marine facies that shows clear affinities with other known faunas.

The fossil material described in this paper represents the results of three field seasons. The first one was conducted by Alfredo Guzmán-Roa (1980), working for the General Exploration Superintendence of Petróleos Mexicanos (Pozz Rica Zone). In the second, B.E. Buitrón (1981b) from Instituto de Geología, Universidad Nacional Autónoma de México, collected the material in the Soyalón de Adentro area. The third one corresponds to the collecting of various nerineids and rudists by Vicente Pérez-Juárez (1992), who generously gave them to the first author of this paper for its study.

The extensive field work in the Tamazula area has yielded many fossiliferous outcrops; from these, the localities of La Presa, Soyalón de Adentro, Agua Zarca, and El Conejo were selected. The discovery of these fossil sites represents an opportunity to study a rich and diverse gastropod fauna, especially when little is known on the geology and paleontology of the Lower Cretaceous of the State of Jalisco. The main objective of this work is to describe this important invertebrate fauna, that bears several index genera, to allow a reliable age assignment for the Tamazula outcrops. Also, the paleontological and paleogeographic aspects of this assemblage will be discussed in terms of its possible relationships with other faunas from southwestern Mexico, United States, the Caribbean and the Mediterranean regions. This information will help to define the limits of what is known as the Caribbean

1Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyocán, 04510 D.F., Mexico.
2Colegio de Ciencias y Humanidades, Universidad Nacional Autónoma de México, Plantel Azcapotzalco, A.729, 09620, México, D.F. Mexico.
province, that comprises the western part of the realm of the sea of Tethys.

The names given to the four localities—La Presa, Soylatán de Adentro, Agua Zarca and El Conejo—correspond to the major geographical features of an area close to 100 km², northwest of the town of Tamazula between 19°40'–19°50'N and 103°15'–103°20'W (Figure 1). All the outcrops belong to the same stratigraphical level and therefore are considered as pertaining to a coeval assemblage.

Figure 1. Geologic map showing fossiliferous localities mentioned in text.

PREVIOUS WORK

The earliest work that deals with the paleontology of the Tamazula area corresponds to the description of an abundant rudist fauna from the small town of Soylatán de Adentro, 5 km NW from Tamazula (Palmer, 1928). Among the numerous rudist species described in this paper are Apricardia chavesi, Monopleura salazari, Chaperia socialis, Baryconites multilineatus, Caprinuloidea perfecta, C. gracilis, C. septata, C. multitubifera, C. costata, C. bisulcata and Coelocomana ramosa (Boehm). Palmer (1928) assigned the age of this fauna to the Cenomanian. Later, Burckhardt (1930, p. 208) in his synthetic work on the Mesozoic of Mexico, devoted a small note regarding Palmer’s (op. cit.) study. Besides corroborating the Cenomanian age assignment, Burckhardt (op. cit.) also included some data on the lithological aspects of the Soylatán de Adentro locality. More than fifty years later, Buitrón (1981b) determined 14 gastropod species from the same fossil site—Soylatán de Adentro—and considered the age of the assemblage as late Aptian–early Albian, rather than Cenomanian. Additionally, when Buitrón (1981a, 1993) revised the distribution of the Cretaceous—Aptian-Albian—gastropods of western Mexico, she found that all the species of the Tamazula area were common in many other well-known localities of Mexico and of other countries.

Afterward, within the same general area, in the neighborhood of Tamazula, in a locality known as Cerro Tuxpan, Buitrón (1986) described another late Aptian–early Albian gastropod fauna composed of Ostostoma japonicum, Microschiza (Cloughtonia) scalaris, Mesoglaucionia burnsi, M. (Triglaucionia) kleinpellii, Gymnentome paluensis, G. zebra, Cassiope sp. cf. C. branneri, Pyrazus (Echinobathra) valeriae, P. (E.) vicinum, Aptysilla sp., A. supracostata and Pygmatis tomasensis. The study of the rudists of the same area (Alencáster and Pantoja-Alor, 1986), reveals that these beds are older than Palmer’s (1928) Cenomanian assignment. The presence of Coelocomana ramosa (Boehm), which has been reported from many other localities of Jalisco, Colima and Michoacán, is indicative of an early Albian age.

Since the gastropods described here are in association with Coelocomana ramosa (Boehm), the age determination of the Tamazula and the Soylatán de Adentro faunas corresponds to the early Albian, without discarding that the base of the sequence might correspond to the late Aptian.

GEOLOGICAL SETTING

In the area located to the northwest of the town of Tamazula, extensive Mesozoic outcrops are exposed. These marine beds bear an abundant and diverse paleobiota that includes rudists, ammonites, gastropods, corals, foraminifers, echinoids and algae.

The region has been studied by geologists of Petróleos Mexicanos (Acosta et al., 1980; Guzmán-Roa, 1980). These works include some superficial geological surveys in which the following units were informally described: the Lower Cretaceous Alberca formation—Berriasian-Hauterivian—that consists of a sequence of mudstone and silty limestone, containing ammonites of the genera Subthurmannia and Mexicanceras. Above the Alberca formation, conformably rests the Tecalitlán formation—Barremian–Aptian—composed of pyroclastics intercalated with claystone. Conformably above this unit, there are rocks of the Tepaltepec formation, that range from the Albian to the Cenomanian. This unit, due to its lithology, was subdivided in two members; one formed by mudstone that grades into wackestone with miliolids and rudists, and the other composed of sandy tuff and limestone—wackestone, packstone, grainstone and boundstone—withandesite intercalations. Its fossil content includes abundant rudists. This unit is overlain unconformably by extrusive Pliocene-Quaternary igneous rocks (Acosta et al., 1980).
In 1991, Páez-Juárez of the Instituto de Geología, found in the Tamazula area, above the ignimbrites of the Tecalitlán formation, a 1,200 m thick sequence of volcanioclastic and volcanosedimentary rocks. Páez-Juárez (1992) considered this unit as pertaining to the Encino Formation—Aptian-Albian—originally described by Pantoja-Alor and Estrada-Barraza (1986) from the Pihuamo area in Jalisco. Páez-Juárez (op. cit.) also reports outcrops of the Encino Formation in the Valle de Soyatán de Adento, in the Arroyo Agua Dulce and in the western flank of Cerro de la Lumbré, all in the Tamazula area (Figure 1). The unit described by Páez-Juárez (op. cit.) shows at its base a conglomerate of andesite-dacite fragments and sandstone. Above these beds, there is limestone—packstone-wackestone—with Orbitolina, which is overlain by silty layers with the gastropods Microschiza (Cloughtonia) scalaris, Mesoglaucosa (Mesoglaucosa) burnsi, Gynnentome (Gymnentome) zebra, Pyrazus (Echinobatrach) valeriae, Lunatia pedernalis, Natica conradi and Phaneroptyx anguillina. Above the beds with gastropods, there is a thick reefal horizon with Toucasia, Coelacoma ramosa, Chondrodonta and Caprinuloidea. Overlying the rudists, there is a dactylic lava flow followed by siltstone, sandstone and limestone—mudstone to wackestone texture—that shows only a scarce rudist assemblage. Above the limestone, there are alternating beds that grade from conglomerate to siltstone and, overlying them, there is another siltstone-bedstone sequence in the La Presa locality. This layer bears the rudistid taxa Coelacoma spp., Coelacona ramosa and the nerineids Aptyxiella Boehni, Multiptyx preeuriaui and Cosmane (Eumerina) hico- riensis. The section ends with a calcareous reefal horizon with the rudists Caprinuloidea sp., Caprinuloidea perfecta and Caprinuloidea lekni, that is topped by a thick sequence of mudstone and sandstone (Páez-Juárez, 1992) (Figure 2).

Regarding the presence of the rudist species within the Tamazula section, Páez-Juárez (op. cit.) determined that the age of the Encino Formation must range from the early to the middle Albian. Nevertheless, the gastropod assemblage studied here suggests that this preliminar age determination must be expanded to the late Aptian.

According to Páez-Juárez (1992, p. 9), the Encino Formation and the Albian-Cenomanian Tepecatepec formation are formed by a sequence of limestone, sandstone, conglomerate, dacitic lava flows, and some siltstone horizons.

SYSTEMATIC PALEONTOLOGY

The studied material has been deposited in the Museum of Paleontology of the Institute of Geology, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyocán, 04510 D.F., with the catalogue numbers IGM-7396, IGM-7419.

Phylum Mollusca Linnaeus, 1758

Class Gastropoda Cuvier, 1797

Subclass Prosobranchia Milne-Edwards, 1848

Order Caenogastropoda Cox

Suborder Mesogastropoda Thiele, 1925

Superfamily Pseudomelaniacea Fischer, 1885

Family Pseudomelanidae Fischer, 1885

Genus Microschiza Gemmellaro, 1878

Subgenus Cloughtonia Hudeleston, 1882

Microschiza (Cloughtonia) scalaris (Conrad), 1852

(Plate 1, figures 1-3)

1868 *Turbo gigas* Verneuil and Lorière, p. 27, pl. 3, fig. 1.

1852 *Natica? scalaris* Conrad, p. 234, pl. 7, fig. 50.
1927 *Coronatica purpuroidea* (Conrad) Blanckenhorn, p. 135, pl. 2, figs. 26, a-c.
1940 *Microschiza (Cloughtonia) scalaris* (Conrad) Delpey, p. 70, text figs. 44-45.
1955 *Microschiza (Cloughtonia) scalaris* (Conrad) Allison, p. 412, pl. 41, figs. 1, 2.
1986 *Microschiza (Cloughtonia) scalaris* (Conrad) Buitrón, p. 22, pl. 1, figs. 2, 3.

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>Apical angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGM-7396</td>
<td>93.0</td>
<td>59.9</td>
<td>71°</td>
</tr>
<tr>
<td>IGM-7397</td>
<td>64.0</td>
<td>48.0</td>
<td>70°</td>
</tr>
</tbody>
</table>

Locality—Agua Zarca, El Conejo.

Remarks—*Microschiza (Cloughtonia) scalaris* has been described as *Turbo gigas* (Verneuil and Lorière, 1868, p. 27, pl. 3, fig. 1) from the Neocomian of Utrillas, Spain. Much later, Aguilar and others (1971) amended the age of those beds and assigned them to the upper Aptian-lower Albion, and Delpey (1940, p. 70, text figs. 44, 45) cited this taxon from the upper Aptian-lower Cenomanian of several localities of Syria and Lebanon.

Allison (1955, p. 412, pl. 41, figs. 1, 2) discussed this species from the Alistos Formation—Aptian-Albian—of Punta China, Baja California, and Buitrón (1986, p. 22, pl. 1, figs. 2, 3) reported this species in the upper Aptian-lower Albion of Cerro Tuxpan, Jalisco State, Mexico.

Microschiza japonica (Nagao in Kase, 1984, p. 110, pl. 14, figs. 5-7) from the Hiraiga and Akito Formations—upper Aptian-early Albion—of the Miyako District, Japan, is a similar species to *M. scalaris*, but smaller in size, with a more spherical shape and a lower spire.

Family Cassiopiidae Kollmann

Genus Mesoglauconia Mennessier, 1984

Subgenus Mesoglauconia Mennessier, 1984

Mesoglauconia (Mesoglauconia) burnsi (Stanton, 1947)

(Plate 1, figures 4, 5)

1947 *Cassiope burnsi* Stanton, p. 78, pl. 57, figs. 9, 10.
1984 *Cassiope burnsi* Stanton, González-León and Buitrón, p. 375, fig. 3.
1984 *Cassiope burnsi* Stanton, Herrera and others, p. 52.
1984 *Cassiope burnsi* Stanton, Valdez-Gómez, p. 292, pl. 1, figs. 6-7.
1984 *Mesoglauconia (Mesoglauconia) burnsi* (Stanton) Mennessier, p. 28, pl. 4, figs. 6-7.
1986 *Mesoglauconia (Mesoglauconia) burnsi* (Stanton) Buitrón, p. 22, pl. 1, figs. 4-6.

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>Apical angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGM-7398</td>
<td>40.3</td>
<td>18.5</td>
<td>32°</td>
</tr>
<tr>
<td>IGM-7399</td>
<td>32.8</td>
<td>16.2</td>
<td>30°</td>
</tr>
<tr>
<td>IGM-7400</td>
<td>29.4</td>
<td>19.0</td>
<td>31°</td>
</tr>
</tbody>
</table>

Locality—Agua Zarca, El Conejo.

Remarks—*Cassiope burnsi* was described by Stanton (1947, p. 78, pl. 57, figs. 9, 10) from the Glen Rose Formation—middle Albian—of Texas, U.S.A. It was registered by González-León and Buitrón (1984, p. 375, fig. 3) and Herrera and others (1984, p. 52) from the Albian beds of Lampaños, Sonora in the north of Mexico. Valdez-Gómez (1984, p. 292, pl. 1, figs. 6, 7) found it in the upper Aptian of Michoacán State, and Buitrón (1986, p. 22, pl. 1, figs. 4-6) in the Encino Formation—upper Aptian-lower Albian—of Cerro Tuxpan, Jalisco State, in central Mexico. This species is similar in the general morphology and shell proportions to *Cassiope brenneri* (Stanton, 1947, p. 77, pl. 57, figs. 1-6; Hill, 1893, pl. 5, figs. 1-7) from the middle Albian—Glen Rose Formation—and from the Albian—Trinity Division—of Texas and Arkansas, U.S.A.; however, it is distinguished by the arrangement and less knotty character of the spiral ribs.

Mennessier (1984, p. 28, pl. 4, p. 6, 7) proposed a new genus (*Mesoglauconia*) and subgenus (*Mesoglauconia*) for *Cassiope burnsi* Stanton.

Genus Gymnentome Cossmann, 1909

Subgenus Gymnentome Cossmann, 1909

Gymnentome (Gymnentome) zebra Gabb, 1869

(Plate 1, figure 6)

1869 *Chennitza zebra* Gabb, p. 260, pl. 35, fig. 5.
1947 *Cassiope zebra* (Gabb) Stanton, p. 79, pl. 57, figs. 7, 8.
1984 *Cassiope zebra* (Gabb) Mennessier, p. 67, pl. 20, figs. 14-16.
1986 *Gymnentome (Gymnentome) zebra* (Gabb) Buitrón, p. 25, pl. 1, figs. 8, 9.

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>Apical angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGM-7401</td>
<td>40.2</td>
<td>25.0</td>
<td>29°</td>
</tr>
<tr>
<td>IGM-7402</td>
<td>25.0</td>
<td>41.0</td>
<td>30°</td>
</tr>
</tbody>
</table>

Locality—Agua Zarca, El Conejo.

Plate 1. Figures 1, 2—*Microschiza (Cloughtonia) scalaris* (Conrad), specimen IGM-7396 (x 0.75). Figure 3—Specimen IGM-7397 (x 1). Figure 4—*Mesoglauconia (Mesoglauconia) burnsi* (Stanton), specimen IGM-7398 (x 2). Figure 5—Specimen IGM-7399 (x 2). Figure 6—*Gymnentome (Gymnentome) zebra* (Gabb), specimen IGM-7401 (x 1.5). Figure 7—*Pyrausa (Echinobathra) valeriae* (Verneuil and Lorière), specimen IGM-7403 (x 1.5). Figure 8—Specimen IGM-7405 (x 1.5). Figure 9—Specimen IGM-7404 (x 1.5). Figure 10—*Aplysiella bochii* (Blanckenhorn), specimen IGM-7408 (x 1.5). Figure 11—Specimen IGM-7409 (x 1.5).
Remarks—Several Cretaceous species as *Cassiope helvetica* (Pictet and Renvier, 1854, p. 28, pl. 3, figs. 2, a, 2, c) from the Aptian of Switzerland and Spain; *C. hyatti* and *C. paluxiensis* from the Albian of Texas and New Mexico, U.S.A. (Stanton, 1947, p. 78, pl. 57, figs. 9, 10; figs. 17, 18) are highly related with *Gymnentome* (*Gymnentome*) *zebra* (Gabb, 1869, p. 260, pl. 35, fig. 5; Mennessier, 1984, p. 67, pl. 20, figs. 14-16) from the Albian of Arivechi, Sonora, and from the later Aptian-early Albian of cerro Tuxpan, Jalisco State (Buitrón, 1986, p. 24, plate 1, figures 8, 9). These species fundamentally differ from *G. zebra* in that this last one has a pupoid shell and presents a smaller number of whorls, characterized by being arranged in a wraping form.

Family Potamididae Troschel
Subfamily Potamidinae Troschel

Genus *Pyrazus* Monfort, 1810

Pyrazus (*Echinobatrha*) *valeriae* (Verneuil and Loriére, 1868)
(Plate 1, figures 7-9)

1868 Cerithium *valeriae* Verneuil and Loriére, p. 11, pl. 2, fig. 1.
1906 *Cerithium valeriae* Verneuil and Loriére, Aguileria, (tab.).
1984 *Pyrazus* (*Echinobatrha*) *valeriae* (Verneuil and Loriére) Valdez-Gómez, p. 289, pl. 1, fig. 5.
1986 *Pyrazus* (*Echinobatrha*) *valeriae* (Verneuil and Loriére) Buitrón, p. 25, pl. 1, figs. 14, 15.

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>Apical angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGM-7403</td>
<td>48.1</td>
<td>16.0</td>
<td>25°</td>
</tr>
<tr>
<td>IGM-7404</td>
<td>41.5</td>
<td>19.0</td>
<td>26°</td>
</tr>
<tr>
<td>IGM-7405</td>
<td>38.9</td>
<td>20.5</td>
<td>25°</td>
</tr>
</tbody>
</table>

Locality—El Conejo, Agua Zarca.

Discussion—*Lunatia pedernalis* has an apparently similar form to *Lunatia? praegrandis* (Stanton, 1947, p. 66, pl. 50, figs. 1, 2), both from the middle Albian—Glen Rose Formation—of Texas, U.S.A. and Sonora, Mexico. However, *L. pedernalis* has a less elongated shell, whorls with shoulder, a different aperture form and a larger umbilicus.

Boese (1910, p. 142, pl. 30, fig. 9) described this species as *Natica pedernalis* from the Albian beds of La Encantada, Chihuahua State, Mexico.

Genus *Natica* Scapoli

Natica conradi (Hill) 1888
(Plate 2, figure 1)

1857 *Buccinopsis parryi* Conrad, p. 158.
1888 *Buccinopsis conradi* Conrad Hill, p. 130, pl. 3, figs. 2, 2, a.
1893 *Buccinopsis? parryi* Conrad Hill, p. 33, pl. 6, fig. 1.
1893 *Buccinopsis conradi* (Hill) Cragin, p. 220.
1947 *Natica? conradi* Stanton, p. 64, pl. 52, fig. 11.

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>Apical angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGM-7407</td>
<td>69.3</td>
<td>64.8</td>
<td>88°</td>
</tr>
</tbody>
</table>
Locality—Agua Zarca.

Remarks—In relation to the genus, it is not probable that the species belongs to Natica sensu strictum, even when it presents a naticoid shell; it is considered more convenient to use the genus in an undefined and general way, instead of trying to make a closer determination, due to the bad state of conservation of the specimen.

The species Lethia laniana Pictet and Campiche (1863, p. 562, pl. 89, figs. 1, a-c, 2); from the Lower Cretaceous of Switzerland and Portugal is similar, but this is much more strong and large, with a broader apical angle and without umbilicus. The comparison of Natica conradi (Stanton, 1947, p. 64, pl. 52, fig. 11) with Buccinopsis parryi Conrad, shows a difference on the shell, which is strongly ornamented and presents a prominent anterior channel.

Subclass Opisthobranchia Milne Edwards, 1848
Order Entomotaeniata Cossmann, 1896
Superfamily Nerineacea, Wenz, 1940
Family Nerinellidae Pechlentsev, 1965

Genus Aptyxilla Fischer, 1885

Aptyxilla boehmi (Blanckenhorn, 1927)
(Plate 1, figures 10, 11)

1878 Cerithium excavatum Fraas, p. 325 (non d’Orbigny).
1890 Cerithium excavatum Brongniart var. syriacum Blanckenhorn, p. 112, pl. 9, figs. 3, 4.
1927 Nerinea (Aptyxilla) boehmi Blanckenhorn, p. 147, pl. 3, fig. 50.
1940 Nerineella boehmi (Blanckenhorn) Delpey, p. 155, figs. 110, 111.

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGM-7408</td>
<td>42.0</td>
<td>22.7</td>
</tr>
<tr>
<td>IGM-7409</td>
<td>46.1</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Locality—La Presa, Soyatlán de Adentro.

Remarks—Aptyxilla boehmi is characterized by the presence of an external, conspicuous, spiral sutural cordon. The section whorl is quadrangular without any folds and umbilicus. Delpey (1940, p. 155, figs. 110, 111) described this species from the Aptian of El Bnaé (Abey), Lebanon.

Genus Multiphyx Pechlentsev, 1953

Multiphyx prefleuriaui (Delpey, 1940)
(Plate 2, figure 3)

1940 Nerinea prefleuriaui Delpey, p. 185, pl. 3, figs. 11-15.
1986 Plesiophytx prefleuriaui (Delpey) Buitrón and Rivero-Carranco, p. 72, pl. 1, figs. 3, a, b.

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGM-7410</td>
<td>52.7</td>
<td>24.2</td>
</tr>
<tr>
<td>IGM-7411</td>
<td>54.0</td>
<td>27.2</td>
</tr>
<tr>
<td>IGM-7412</td>
<td>67.4</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Locality—La Presa, Soyatlán de Adentro.

Remarks—Multiphyx prefleuriaui presents a high relationship with Nerinea fleuriaui d’Orbigny (1842, p. 85, pl. 160, figs. 6-7) described from the Cretaceous of France, but Delpey (1940, p. 186) explained that the whorls are more excavated, with tubercles in the sutures and the fold of the internal cavity is more pronounced, with a quadrangular labial fold. Delpey (op. cit.) considers that this species, typical of the Aptian of several localities of Lebanon, could be a stratigraphical variety of N. fleuriaui, common of the Alban-Cenomanian for the same geographic region.

Rossi-Roncetti (1965, p. 161, pl. 41, figs. 5-8; pl. 42, figs. 1-3) described Plesiophytx desioi from the Aptian-Albian of Yosin in the northwest of Pakistan, and considers it similar to P. prefleuriaui, but the differences are mainly established by the presence of a major spiral angle and of an umbilicus in P. desioi.

Family Nerineidae Zittel, 1873

Genus Costrmannea Pechlentsev, 1931
Subgenus Eunerinea Cox, 1949

Costrmannea (Eunerinea) hicoriensis (Cragin, 1893)
(Plate 2, figure 5)

1893 Nerinea hicoriensis Cragin, p. 225, pl. 42, fig. 6.
1925 Nerinea hicoriensis Cragin Dietrich, p. 115.
1928 Nerinea hicoriensis Cragin Adkins, p. 186.
1947 Nerinea hicoriensis Cragin Stanton, p. 83, pl. 58, figs. 2, 4.
1966 Nerinea titania Felix, Aguilera (plate).
1956 Costrmannea (Eunerinea) hicoriensis (Cragin) Alencástor, p. 38, pl. 6, fig. 7.

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGM-7413</td>
<td>110.4</td>
<td>47.5</td>
</tr>
<tr>
<td>IGM-7414</td>
<td>45.0</td>
<td>39.5</td>
</tr>
<tr>
<td>IGM-7415</td>
<td>35.0</td>
<td>26.4</td>
</tr>
</tbody>
</table>

Locality—Pres de Soyatlán.

Remarks—Nerinea hicoriensis Cragin is characteristic of the base of the Travis Peak Formation of Texas (Stanton, 1947, p. 83). Other specimens have been found in the San Juan Raya Formation, Puebla (Alencástor, 1956, p. 38), Encino Formation, Jalisco and San Lucas Formation, Michoacán (Buitrón, 1981a).
Family Itieridae Cossmann, 1896

Genus Phaneroptyxis Cossmann, 1896

Phaneroptyxis anguillina (Bárcena and Castillo, 1875)
(Plate 2, figure 7)

1906 Nerinea (Itieria) natuchensis Aguilera nomen nudum (tab.).
1925 Itieria? anguillina (Castillo and Bárcena) Dietrich, p.146.
1956 Phaneroptyxis anguillina (Castillo and Bárcena) Alencáster, p. 40, pl. 7, figs. 11, 12.
1980 Phaneroptyxis anguillina (Castillo and Bárcena) Buitrón and Barceló-Duarte, p. 54.
1986 Phaneroptyxis anguillina (Castillo and Bárcena) Buitrón and Rivera-Carranco, p. 77, pl. 3, figs. 4, a-c.

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGM-7416</td>
<td>47.0</td>
<td>23.0</td>
</tr>
<tr>
<td>IGM-7417</td>
<td>57.0</td>
<td>22.0</td>
</tr>
</tbody>
</table>

Locality—El Conejo, Aguja Zarca.

Remarks—Bárcena and Castillo (1875, p. 380, figs. 13, 14) described Nerinea? anguillina from the Cretaceous of Huatamo, Michoacán. These authors considered that the sections of gastropods that are exposed in the limestone rocks of the caves of Cacahuamilpa, in the State of Morelos, Mexico, correspond to this species. Alencáster (1956, p. 40, pl. 7, figs. 11, 12) and Buitrón and Barceló-Duarte (1980, p. 54) cited it from the Barremian-Aptian of San Juan Rayu, Puebla, Mexico. Buitrón and Rivera-Carranco (1986, p. 77, pl. 3, figs. 4, a-c) found this species in Huatamo, Michoacán.

Genus Peruvialla Olsson, 1944

Peruvialla gerthi Olsson, 1944
(Plate 2, figures 6, 8)

1934 Pervia gerthi Olsson, p.73, pl. 9, figs. 1-3.
1936 Trochactaeon sergipensis Maury, p. 222 (225), pl. 13, figs. 2, 5, 6, 8.
1944 Peruvialla gerthi Olsson, p. 6.
1979 Peruvialla gerthi Kollmann and Sohl, p. A13, figs. 4, d, 5, f-k.

<table>
<thead>
<tr>
<th>Catalogue No.</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>Apical angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGM-7418</td>
<td>60.5</td>
<td>51.2</td>
<td>32°</td>
</tr>
<tr>
<td>IGM-7419</td>
<td>70.0</td>
<td>46.0</td>
<td>32°</td>
</tr>
</tbody>
</table>

Locality—Presa de Soyatlán.

Remarks—As it is observed in Peruvialla dolium (Roemer) and Peruvialla gerthi Olsson (Kollmann and Sohl, 1979, p. A13, figs. 4, d, 5, f, k; p. A14, figs. 4, e-g, 6, f-k) from the Albian of Texas, of Peru and Brazil, respectively, exists a close relationship among the peruvianids of the Cretaceous of America.

The fundamental difference among these two species is based on the general form of the shell and also on the design of the folding, since the columellar lip is much larger than the other folds in P. gerthi; on the other hand, P. dolium Roemer is a species with a great polymorphism and an intergradation of characters that hinders to a certain point, the specific determination (Kollmann and Sohl, 1979).

PALEOBIODEMOGRAPHIC RELATIONSHIPS

The gastropods described in this investigation are characteristic of the neritic facies; their association with rudists is meaningful, considering that these organisms are typical of the reefal facies. For this reason, the analysis of the world distribution of the species from Tamazula, allows to know the affinities of similar associations in other regions of the world during the Early Cretaceous. The establishment of this faunistic distribution also contributes to the knowledge of the displacement that the lands and seas had along the geological time, since one of the most relevant characteristics of the Cretaceous was the great movement of the tectonic plates, originating the climatic changes that were increasing the natural selection forces and the distribution of the organisms (Kaufman, 1979). These events are fundamental, since it has been found that the Caribbean subprovince was united to the Mediterranean province. On the other hand, the Caribbean subprovince was a center of endemicism during the Albian. Other important datum is that the greater reef systems of the Cretaceous are found on paleolatitudes 30 to 40° N (Habich, 1979), that comprise the south of the United States, Mexico, the Antilles, the Mediterranean zone, Egypt, Palestine and the southeast of Asia. In other sense, other relevant consideration is that the advances of the sea onto the land, put in touch, but narrowed, the Gulf-Antillean zone throughout Texas, New Mexico, Arizona (U.S.A.), Sonora, Sinaloa, Colima, Jalisco, Michoacán, Puebla (Mexico), implying increases in the temperature, which meant more favorable conditions for the dispersion and radication of the gastropods.

Among the species of Tamazula, Jalisco, with a wide paleogeographic distribution, are the following:

Microschiza (Cloughtonian) scalaris (Delpy, 1940, p.70) from several localities of the late Aptian-early Cenomanian of Syria and Lebanon; from Punta China, Baja California Norte (Allison, 1955) and from the upper Aptian-lower Albian of Tuxpan, Jalisco (Buitrón, 1986, p. 22).

Mesoglaucionia (Mesoglaucionia) burnsi was described for the first time by Stanton (1947, p. 78, pl. 57, figs. 9, 10) from the Glen Rose Limestone (Albian) of Wise County,
Texas, U.S.A. González-León and Buitrón (1984, p. 375, fig. 3) and Herrera and coworkers (1984, p. 52) cited it from the Albion of the area of Lampazos, Sonora; Valdez-Gómez (1984, p. 292, pl. 1, figs. 6, 7) from the Aptian of Cocado and Los Llanos, Michoacán, and Buitrón (1986, p. 22) from the Aptian of Tuxpan, Jalisco.

Gymnentome (Gymnentome) zebra was discussed by Gabb (1869, p. 260, pl. 35, fig. 5), by Mennessier (1984, p. 67, pl. 20, figs. 14-16), from the Albion of Ariveche, Sonora, Mexico and by Buitrón (1986, p. 24, pl. 1, figs. 8, 9) from the upper Aptian-lower Albion of the Encino Formation of Tuxpan, Jalisco.

Pyrazus (Echinobathra) valeriae was reported from upper Aptian-lower Albion beds from Utrillas, Spain (Verneuil and Lorière, 1868, p. 11, pl. 2, fig. 1; Aguilar et al., 1971). Also this species is known from coeval sediments from Coacoar, Michoacán (Valdez-Gómez, 1984, p. 289, pl. 1, fig. 5) and Cerro Tuxpan, Jalisco (Buitrón, 1986, p. 25, pl. 1, figs. 14, 15).

Lunatia pedernalis is cited by Gabb (1869, p. 278) from the Albion of Arivechi, Sonora and by Stanton (1947, p. 67) from the middle Albion of Glen Rose Limestone, Texas; Buitrón (1981b) refers it to the region of Tamazula, Jalisco. Boese (1910, p. 142, pl. 30, fig. 9) described this species from the Albion beds of La Encantada, Chihuahua State.

Natica conradi was reported by Stanton (1947, p. 65) from the Queen Formation—Cretaceous—of Arkansas and from the Glen Rose Formation—Albian—of Texas; and also by Buitrón (1981a, tab. 12), from the region of Tamazula, Jalisco.

Aptyxiella boehmi has a scarce distribution in the Lower Cretaceous of Mexico (Buitrón, 1981a, tab. 12), since it is recorded from the Aptian of several localities of Lebanon (Delpey, 1940, p. 155, figs. 110-111).

Multyptixis preflueriaui was described by Delpey (1940, p. 186) from the Aptian of several localities of Lebanon. Buitrón and Rivera-Carranco (1986, p. 72) reported it from the Aptian of the Huautamoa area of Michoacán State.

Cossmannea (Eunerine) hicoriensis is typical of the Aptian of the San Juan Raya region, Puebla (Alencastre, 1956, p. 38). Stanton (1947, p. 83) refers it to several localities of Texas, while Buitrón (1981a, tab. 12) from the Aptian of the west of Mexico (Michoacán and Jalisco).

Phaneroptix anguiillina has only been reported from the Barremian-Aptian of central and southern Mexico. In the Huautamoa area, Buitrón and Rivera-Carranco (1986, p. 75, pl. 3, figs. 4, a-c) cited this taxon from the Encino Formation—Aptian-Albian—and in the San Juan Raya area it has been reported by Alencastre (1956, p. 40, pl. 7, figs. 11, 12) from the Zapotitlán Formation—Barremian—and from San Juan Raya Formation—Aptian.

Peraviella gerthi is mentioned from middle to late Albian of Peru and Brazil (Kollman and Sohl, 1979, p. A13, figs. 4, d, 5, f, k; p. A14, figs. 4, e-g, 6, f-k) (Table 1).

Table 1. Paleogeographic distribution of the gastropods from Tamazula, Jalisco.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>USA</th>
<th>MEXICO</th>
<th>SOUTH AMERICA</th>
<th>EUROPE</th>
<th>ASIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arkansas</td>
<td>Texas</td>
<td>Baja California</td>
<td>Sonora</td>
<td>Chihuahua</td>
</tr>
<tr>
<td>Microchiza (Cloughtonina) scalaris (Conrad)</td>
<td>Ap-Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesoglauciona (Mesoglauciona) burnasi (Stanton)</td>
<td></td>
<td>Al</td>
<td>Al</td>
<td></td>
<td>Ap-Al</td>
</tr>
<tr>
<td>Gymnentome (Gymnentome) zebra (Gabb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ap-Al</td>
</tr>
<tr>
<td>Pyrazus (Echinobathra) valeriae (Verneuil and Lorière)</td>
<td>Ap-Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunatia pedernalis (Roemer)</td>
<td>Al</td>
<td>Al</td>
<td>Al</td>
<td></td>
<td>Ap-Al</td>
</tr>
<tr>
<td>Natica conradi (Hill)</td>
<td>Ap-Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aptyxiella boehmi (Blacketonhorn)</td>
<td>Ap-Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multyptixis preflueriaui (Delpey)</td>
<td>Ap-Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cossmannea (Eunerine) hicoriensis (Cragin)</td>
<td>Ap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phaneroptix anguiillina (Bârceca and Castillo)</td>
<td>Ap-Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peraviella gerthi Olsson</td>
<td>Ap-Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Ba, Barremian; Ap, Aptian; Al, Albian; Ce, Cenomanian.
The world known distribution of these taxa implies that on the Aptian-Albian existed a wide marine faunistic province, that comprised the southeast of United States of America, the west and southeast of Mexico, the Caribbean and the Mediterranean regions of Europe and Asia.

ACKNOWLEDGMENTS

The authors are grateful of the critical review of the manuscript by doctors Manuel Iturralde and Reinaldo Rojas from the Museo Nacional de Historia Natural, Habana, Cuba. Likewise, they thank the technical assistance provided by Luis Espinosa-Arrubarrera, M. Sc. The illustrations were kindly prepared by Javier Osorio and Gregorio Chávez.

BIBLIOGRAPHICAL REFERENCES

Alencáster, Gloria, 1956, Forcículos y gasterópodos del Cretácico inferior de la región de San Juan Ray-Zapotitlán: Estado de Puebla: Universidad Nacional Autónoma de México, Instituto de Geología, Paleontología Mexicana II, 2, 7 p., pls.

Herrera, S.; Bartolini, C.; Pérez, R.O.; and Buitrán, B.E., 1984, Paleontología del área de Lampaos, Sonora, México, Universidad de Sonora (Uni-Son), Boletín, v. 1, p. 50-54, 9 pl.

Nagao, Takami. 1934, Cretaceous mollusca from the Miyako district, Honshu, Japan: Japan, Hokkaido Imperial University, Faculty of Sciences, ser. 4, v. 2, no. 3, 177-277, pl. 23-39.

Petchelnislev, V.F., 1931, Upper Jurassic and Lower Cretaceous gastropods of

—1953, Gastropod fauna of the Upper Cretaceous deposits of Transcaucasia and central Asia: Moscow, Izvestiya Akademii Nauk, USSR, Seriya Geologicheskaya, 388 p., 51 pls., 47 text figs.

—1852, Die Kreidebildung von Texas und ihre organischen Einschlüsse: Bonn, 100 p., 11 pls.

Manuscript received: January 25, 1995.
Corrected manuscript received: October 2, 1995.
Manuscript accepted: October 9, 1995.