CARACTERÍSTICAS DE LA COMPOSICIÓN MINERALÓGICA DE LAS MENAS DE LA VETA MADRE DE GUANAJUATO

RESUMEN

En el área del distrito minero de Guanajuato se efectuó un estudio de los minerales metálicos de la Veta Madre. Así, se establece las diferentes etapas de mineralización y analiza los contenidos de elementos en cada mineral.

Las etapas de mineralización son: (1) etapa temprana con sulfuros de Cu-Pb-Zn, (2) etapa metálica con Ag-Au con cuarzo blanco, (3) etapa metálica con Ag-Au con cuarzo transparente y calcita, y (4) etapa postmetálica con calcita.

La serie acanita-aguarilarita-naumanita muestra una continuidad respecto al contenido de selenio y azufre y no sufre esxoluciones. El contenido de azufre varía desde 13.19 hasta 2.19%, el contenido de selenio desde 1.53 hasta 19.46% y el contenido de plata desde 85.28 hasta 78.35% entre los minerales acanita y naumanita, respectivamente.

Otros minerales importantes económicamente son electrum, plata nativa, polibasita, calcopirita, esfalerita y galena.

Palabras clave: mineralogía, acanita, aguarilarita, naumanita, Veta Madre, Guanajuato, México.

ABSTRACT

A study was undertaken in the mining district of Guanajuato to determine the mineralogy of the Veta Madre vein. The stages of mineralization were determined and the elemental content of each mineral was analyzed.

The stages of mineralization are: (1) early stage with sulphides of Cu-Pb-Zn, (2) metallic stage with Ag-Au with white quartz, (3) metallic stage with Ag-Au with transparent quartz and calcite, and (4) post-metallic stage with calcite.

The system acanith-aguarilar-ita-naumanite shows continuity with respect to the contents of selenium and sulfur and does not show exsolution textures. The content of sulfur ranges from 13.29 to 2.19%, the content of selenium from 1.53 to 19.46%, and the content of silver from 85.28 to 78.35% respectively, between the minerals acanith and naumanite.

Some other economically important minerals are electrum, native silver, polybasite, chalcopirite, sphalerite and galena.

Key words: mineralogy, acanith, aguarilarite, naumante, Veta Madre, Guanajuato, Mexico.

INTRODUCCIÓN

En el área del distrito minero de Guanajuato se encontró por vez primera el mineral aguarilarita (Genth, 1891, 1892), el cual es de gran importancia económica aun en las explotaciones mineras que se realiza actualmente al sur de la Veta Madre.

Los minerales metálicos son de tamaño microscópico y, a pesar de que se ha hecho estudios minerigráficos, sólo con la ayuda de un microanalizador electrónico se ha dilucidado su composición química exacta. Tal es el caso de la serie isomorfa acanita-aguarilarita-naumanite, la cual nunca se presenta con su composición química teórica, sino que se trata de una serie continua (Vassallo y Borodaev, 1982).

GEOLOGÍA DEL DISTRITO MINERO DE GUANAJUATO

La geología del área del distrito minero de Guanajuato ha sido objeto de diversos estudios; las aportaciones más sobresalientes han sido presentadas por los autores que se menciona a continuación: Monroy (1888), Hill (1904), Church (1907), Wandke y Martínez (1928), Guiza y colaboradores (1949), Edwards (1955), Consejo de Recursos Naturales no Renovables (1963), Antúnez-Echeagaray (1964), Echeverría-Sánchez y colaboradores (1970), Gross (1975), Vassallo (1981), Vassallo y Boro
daev (1982) y Vassallo y colaboradores (1982). El Dr. Juventino Martínez, de la Estación Regional del Centro del Instituto de Geología de la UNAM, está por terminar la cartografía geológica de toda la Sierra de Guanajuato, la cual será una contribución importante al conocimiento geológico de este antiguo distrito minero.

En la Figura 1 se muestra uno de los primeros mapas geológicos del distrito, el cual fue elaborado por Wandke y Martínez (1928), quienes también realizaron el resumen de la estratigrafía del área.
MÉTODOS DE ESTUDIO

Para estudiar la composición y distribución de los minerales de veta de la Veta Madre se efectuó un muestreo en las obras subterráneas principales de la Mina Las Torres y en algunas de la Mina de Rayas. A simple vista se observa, en superficies pulidas, los minerales argentíferos como puntos o líneas negras. Generalmente, los minerales de plata no quedan bien pulidos, debido a su poca dureza; por esta razón, de las 300 muestras obtenidas, sólo se seleccionó aquéllas que contienen los minerales más grandes y mejor pulidos para ser estudiados con ayuda de un microscopio minerográfico y un microanalizador electrónico JXA-5 de la firma japonesa JEOL, en el Laboratorio de Microscopía Metólica del Departamento de Geología y Geoquímica de Yacimientos Minerales de la Facultad de Geología de la Universidad Estatal de Moscú, M.V. Lomonosov.

Por otra parte, se seleccionó los minerales argentíferos con el microscopio minerográfico pero, debido a que tienen características ópticas parecidas, sólo con la ayuda del microanalizador electrónico fue posible estudiar su composición química y su grado de homogeneidad. También se estudió la presencia de algunos elementos dispersos en los minerales siguientes: esfalerita, galena, calcopirita, plata nativa, electrum, pirita y polibasita.

Las variables de microanálisis dadas en el microanalizador fueron las siguientes: potencial de aceleración, 25 kV; corriente del rayo, entre 0.5 y 2.0 mA; ángulo de incidencia de los fotones roentgen, 40°; diámetro de la sonda, 1 μm. Se utilizó los cristales analizadores LiF, RAP y PET. Como patrones se empleó metales puros, galena (para S y Pb), la cual antes se analizó químicamente, y compuestos sintéticos de FeS (para S).

Para conocer el grado de homogeneidad de los granos minerales y fases minerales diferentes, muy cercanas o parecidas por sus características ópticas, se utilizó, ampliamente, el método de oscilación de la sonda, obteniendo en la pantalla las imágenes de electrones secundarios y rayos roentgen. En el primer caso, se observó con claridad las diferencias existentes entre las fases minerales por su brillantez, la cual depende del número atómico promedio del mineral obtenido de sus elementos constitutivos.
PARTICULARIDADES DEL ANÁLISIS CON MICROSONDA DE LOS MINERALES ARGENTÍFHEROS

Mientras se realizó el análisis de los minerales de la serie acantita-agularita-naumanita, surgieron algunas dificultades específicas. Los granos minerales de dicha composición, al igual que muchos minerales argentífheros, se funden y deshacen cuando la sonda electrónica incide en ellos. Una de las causas de lo anterior, de acuerdo con Sliusarev (1971), es su conductividad calórica baja. Como resultado del sobrecalentamiento del mineral, éste se funde, la sonda incrementa su profundidad en la muestra, la intensidad de la radiación roentgen baja por causa de aumento del reflejo de los fotones, la corriente aumenta en la muestra debido a una disminución del reflejo de los electrones. Todo lo anterior conduce a un decremento en la exactitud de los resultados del análisis.

Durante una incidencia prolongada de la sonda, se puede cambiar también la relación de las concentraciones de los otros elementos, Sliusarev (1971) propuso varias maneras de bajar la influencia de la sonda en tales minerales, a saber: aumento del diámetro de la sonda, aumento de la velocidad de movimiento de la muestra, pulido de la muestra, disminución de la intensidad de la corriente de la sonda.

En el transcurso del análisis de los minerales acantita y agularita, la intensidad de radiación roentgen para la plata y otros elementos disminuyó considerablemente. Para evitar lo anterior, se tomó en cuenta la experiencia de Borodaev y colaboradores (1979), así como la de Nekrasova y Borodaev (1972) para analizar un sulfato de plata y selenio (kannfilita). Para disminuir el grado de fusión del mineral y errores en la medición de intensidades, se amplió el diámetro de la sonda a 20 μm, al mismo tiempo, se acrecentó el movimiento de la muestra a 10 μm/seg. De esta manera, se obtuvo resultados correctos y muy estables.

CARACTERÍSTICAS DE LA COMPOSICIÓN MINERALÓGICA

Los minerales metálicos en la Veta Madre se encuentran distribuidos en una masa de cuarzo-calcita-adularia. El tamaño del grano de los minerales de mena es el siguiente (en mm): serie acantita-naumanita y polibasita, desde 0.01 hasta 0.1; electrúm, hasta 0.025; esfalerita, hasta 0.1; galena, hasta 0.08; calcopirita desde 0.025 hasta 0.04 y pirita desde 0.1 hasta 1.0.

Los minerales metálicos están distribuidos a lo largo de la Veta Madre, si bien sus concentraciones mayores, que no sobrepasan el 5% del volumen total de la veta, se presentan en las llamadas zonas de stockwork o criaderos en masa, condicionadas por ondulaciones en el plano de falla de la Veta Madre (Vassallo, 1981).

En cualquier muestra de la Veta Madre puede encontrarse cantidades pequeñas de plata y oro y en muchas zonas estos elementos alcanzan concentraciones económicas, aunque no siempre es posible encontrar minerales que contengan dichos elementos, aun con ayuda del microscopio mineraográfico.

Las menas se caracterizan por tener tres tipos de textura: rítmica columnar, disseminada y brechosa.

TEXTURA RÍTMICA COLUMNAR

Está desarrollada principalmente en las zonas amplias de stockwork, donde se puede encontrar frecuentemente minerales argentífheros de tamaño relativamente grande; además, está compuesta por sucesiones de columnas de cuarzo blanco, intercrecimientos de cuarzo transparente con calcita y calcita sola. Esta textura se considera simétrica, debido a la ubicación de las columnas minerales.

TEXTURA DISSEMINADA

Se encuentra en la misma veta, sobre todo en las zonas donde hay desarrollo de mineralización de ley baja. Se compone de minerales de plata de grano pequeños distribuidos en una masa de cuarzo blanco masivo (primera etapa).

TEXTURA BRECHOSA

Se desarrolla solamente en algunas zonas de la Veta Madre, donde se existen cuerpos pequeños de stockwork, o bien, donde la mineralización se localiza en la misma veta. En esta textura brechoide, los fragmentos de cuarzo (de hasta un centímetro de diámetro) con mineralización dispersa están cementados, también, por cuarzo transparente de la primera generación.

La asociación de minerales metálicos en las diferentes texturas es semejante, aunque se observa aumento de sulfuros de Cu, Pb y Zn en las partes bajas de los cuerpos de La Mina Las Torres. Tal incremento de sulfuros pudiera significar el término de la mineralización de plata y su paso a una mineralización polimétrica de sulfuros de Cu, Pb y Zn, donde el oro y la plata casi no existen.

El estudio de la textura rítmica columnar demuestra que la mineralización metálica se efectuó en dos etapas. Se percibe claramente que en la primera los minerales metálicos se depositaron conjuntamente con el cuarzo (etapa de cuarzo blanco), y en la segunda se depositaron asociados con cuarzo y calcita (etapa de cuarzo transparente-calcita).

Los minerales metálicos principales son la serie acantita-agularita-naumanita, polibasita, electrúm y plata nativa; como secundarios económicamente, calcopirita, esfalerita, galena y pirita. En la Figura 2 se presenta un esquema paragenético de las etapas de mineralización en la Mina Las Torres. Se observa cuatro etapas minerales, de las cuales dos son metálicas y con las cuales está relacionado el desarrollo de la mineralización argentoaurífera.

PIRITA

Este mineral es uno de los que se formó primordialmente; se distribuye de modo desigual, aunque todas las vetas tienen zonas con un contenido alto de él; sus cristales son euhedrales frecuentemente y su tamaño varía desde 0.1 hasta 1.0 mm. En las menas se observó dos generaciones de pirita. La pirita I forma intercrecimientos estrechos con otros sulfuros y muchas veces contiene sulfuros en forma de inclusiones. La pirita II consiste en
Figura 2.- Esquema paragenético de las etapas de mineralización en la Mina Las Torres, Guanajuato.

Ejemplares muy bien cristalizados dentro de la veta misma.

GALENA, CALCOPIRITA Y ESFALERITA

Estos minerales tienen, como regla, una distribución restringida y se encuentran siempre juntos. Se ubican principalmente en las partes bajas de las vetas argentocuñeras. En las partes superiores de las vetas, su cantidad es muy pequeña y no se considera económica, además de que la galena es de un tamaño muy pequeño. En las partes inferiores, los minerales llegan a medir hasta 2 cm, pero en ninguna parte se encontró que la galena contenga plata, es decir que sea galena argentífera. En las partes profundas, los minerales galena, calcopirita y esfalerita están acompañados de pirita. La galena se asocia también con la aguilarita, con la cual forma intercrecimientos muy estrechos (Figura 3). En la Figura 4 se muestra el mismo mineral (galena) bajo rayos roentgen Ag Lα, donde se observa que éste no contiene plata. Al contrario, la imagen de la galena bajo rayos roentgen Se Lα (Figura 5) demuestra que contiene selección en calidad de elemento añadido. Un análisis con microsonda de dicho mineral dio la composición siguiente (en %): Pb, 85.1; S, 11.7; Se, 2.7; con Ag ausente, de lo que resulta un total de 99.5. Lo anterior da la fórmula siguiente: Pb₃S,90Seₐ,09.

También se encontró que la galena aparece incluida en la pirita.

La calcopirita se presenta con grano muy fino en las menas de los cuerpos de la Mina Las Torres; su tamaño es de 0.04 mm, pero en las partes inferiores de la Veta Madre, en la Mina de Rayas, su dimensión aumenta, alcanzando desde 3 hasta 4 mm. Un análisis con microsonda de esta última, demuestra que no tiene elementos adicionados y su composición es semejante a la teórica (en %): Cu, 35.3; Fe, 34.4; S, 30.8; con un total de 100.5, que da la fórmula siguiente: Cu₀₉₉Fe₁₀₀S₂₀₁.

La esfalerita se presenta también en tamaños pequeños, con minerales de hasta 0.1 mm. Se encuentra junto a la pirita, con la cual presenta intercrecimientos muy frecuentemente. También es común encontrar a la esfalerita en estructura de emulsión al lado de la calcopirita y a veces con electrum. En la esfalerita siempre está presente el cadmio, en calidad de elemento huella; en la Mina Las Torres se observó que el contenido de Cd en la esfalerita varía de 1.32% en el nivel 590 hasta 0.68% en el nivel 390, lo cual indica que el cadmio tiende a disminuir hacia las partes altas de las bonanzas.

Figura 3.- Intercrecimiento de galena (blanco), aguilarita (gris oscuro, análisis 24) y cuarzo (negro). Bajo electrones secundarios. Largo de la imagen, 200 μm.

Figura 4.- Intercrecimiento de galena, aguilarita (análisis 24) y cuarzo. Imagen correspondiente a la Figura 3. Bajo rayos roentgen Ag Lα. Largo de la imagen, 200 μm.
Este mineral se encuentra principalmente asociado con la etapa de cuarzo y con la presencia de pirita, galena y esfalerita. El electrón tiene forma de gota, cuyo tamaño es de 0.025 mm, aproximadamente.

Con la ayuda de la microsonda, se efectuó dos análisis en niveles diferentes de la Mina Las Torres (en %): Nivel 440, Ag, 41.1; Au, 55.8; total, 96.9; y Nivel 540, Ag, 37.5; Au, 59.5; total, 97.0.

PLATA NATIVA

Se encuentra relacionada estrechamente con la agularita, a la cual rodea frecuentemente. El tamaño de los minerales aditomórficos de plata nativa es parecido al del electrón. Un análisis con microsonda muestra qué contiene selenio en calidad de elemento adicional; es decir (en %), Ag, 99.45; Se, 2.48; con un total de 101.93.

POLIBASITA

Siempre se encuentra en intercrecimientos fuertes con los minerales de la serie cancita-agularita-naumantita, a los cuales se parece ópticamente. Bajo luz reflejada, la polibasita es de color gris-blanco con tonalidad verdosa; también se pule mal; su anisotropía es débil y tiene reflexión doble muy débil. Debido a su tamaño microscópico, desde 0.01 hasta 0.10 mm, y semejanza por sus características ópticas con otros minerales de plata, sólo se puede diagnosticar confiadamente con ayuda de la microsonda electrónica. Además, se determinó que la polibasita en las menas de la Mina Las Torres es una variedad selenífera.

En las Figuras 6 y 11 (imágenes bajo electrones secundarios) se muestran intercrescimientos diferentes de polibasita con agularita. En primer lugar, la polibasita está rodeada por la agularita; en segundo lugar, hay una relación inversa, la polibasita rodea a la agularita. Lo anterior demuestra que dichos minerales se formaron conjuntamente.
microanálisis, ya que los granos de los minerales son muy pequeños y por tanto quedan mal pulidos.

MINERALES QUE CONTIENEN SELENIO

Como ya es conocido, en los depósitos hidrotermales, en la mayoría de los casos, el selenio se concentra en calidad de elemento adicionado en minerales diferentes o en calidad de minerales de selenio, propriamente. Las cantidades más altas de este elemento se producen en depósitos de temperaturas bajas y en depósitos de plata-oro, predominantemente.

Debido a que en el distrito minero de Guanajuato existen cantidades grandes de selenio haremos, breve-

Figura 8.- Polibasita, rodeada por una banda de agularita (análisis 20). Imagen correspondiente a la Figura 6. La parte inferior derecha es el material usado para hacer contacto eléctrico a base de plata. Bajo rayos roentgen Ag Lct. Largo de la imagen, 200 µm.

Figura 10.- Polibasita, rodeada por una banda de agularita (análisis 20). Imagen correspondiente a la Figura 6. La parte inferior derecha es el material usado para hacer contacto eléctrico a base de plata. Bajo rayos roentgen Sb Lct. Largo de la imagen, 200 µm.

mente, algunas consideraciones sobre las particularida-

des de este elemento.

El selenio tiene características cristaloquímicas parecidas al azufre. Las peculiaridades geoquímicas fundamentales del selenio en la corteza terrestre son cercanas a las del azufre. Los radios iónicos semejantes del selenio (1,93 Å) y azufre (1,82 Å) coadyuvan a la similitud en propiedades geoquímicas. Esto le permite a este elemento formar uniones químicas diversas, tales como óxidos, ácidos y, las más frecuentes en la naturaleza, sulfuros y seleniuros.

Por lo general, los minerales de selenio se presentan en tamaño microscópico, lo cual dificulta el estudio de sus características y su diagnóstico. Estos minerales no se forman cuando hay iones de azufre en los fluidos

Figura 9.- Polibasita, rodeada por una banda de agularita (análisis 20). Imagen correspondiente a la Figura 6. La parte inferior derecha es el material usado para hacer contacto eléctrico a base de plata. Bajo rayos roentgen Cu Kct. Largo de la imagen, 200 µm.

Figura 11.- Agularita (blanco, análisis 22), rodeada por un anillo de polibasita (gris). Bajo electrones secundarios. Largo de la imagen, 200 µm.
hidrotermales, puesto que en estos casos el selenio entra en la rejilla de los sulfuros y en forma isomorfa reemplaza al azufre (Sindeeva, 1959).

En las vetas de Guanajuato, en fechas diferentes, se encontró tres minerales de selenio: guanajuatita, paraguanajuatita y aguilarita. Genth (1981) dio el nombre de aguilarita; guanajuatita fue nombrada por Fernández (1873) y Ramdohr (1948), en algunas muestras de minerales, encontró y describió paraguanajuatita. Además de los minerales de selenio antes mencionados, este elemento entra adicionado en cantidades diversas en la acantita y, como se ha aquí establecido, en la polibasita, la galena y la plata nativa.

Según investigaciones de Godovikov (1972), el seleniuro de bismuto, Bi₂Se₃, sintético, por sus características, se diferencia considerablemente de la bismutinita ortorrombica. Este autor opina que no se ha demostrado que en la naturaleza exista un seleniuro rombico de composición Bi₂Se₃, por lo cual no hay fundamento para que se conserve el término paraguanajuatita, que significa un paramorfismo trigonal de Bi₂Se₃ o guanajuatita (Godovikov y Kliaxin, 1966).

MINERALES DE LA SERIE ACANTITA-AGUILARITA-NAUMANITA

Estos minerales son los contenedores principales de plata en las menas del distrito minero de Guanajuato y, sobre todo, en la zona de la Mina Las Torres. El mineral aguilarita fue encontrado por vez primera en Guanajuato (Genth, 1891, 1892). Estos minerales tienen las características que se menciona a continuación.
La acantita es una modificación polimórfica monoclinica de temperatura baja de Ag$_2$S, la cual a 176°C sufre una variación cúbica a argentina (Kracek, 1946). La probabilidad de formación de la acantita como resultado de una transformación de fases de Ag$_2$S es un reflejo del aumento del contenido de S y de la disminución del de Se (Saxarova y Brzigalov, 1981).

La aguilarita es una modificación polimórfica rómbara de temperatura baja de Ag$_2$SeS, la cual a 122°C pasa a cúbica (Main et al., 1972).

La naumanita también es un mineral de temperatura baja, polimórfico rómbarco de Ag$_2$Se, el cual a 133°C cambia a cúbico (Conn y Taylor, 1969).

Los minerales de la serie acantita-aguilarita-naumanita poseen características ópticas similares: color gris-blanco con tonalidad verdosa y anisotropía débil. De acuerdo con la escala de Mohs, tienen un grado de dureza desde 2 hasta 2.5. Estos minerales forman disminuciones en las vetas; su tamaño no es mayor que 0.1 mm, siendo por lo general de 0.01 mm. Frecuentemente, están en intercrecimientos con la pirita, galena y polibasita (Figuras 3, 6 y 11). En el cuarzo masivo no se encuentran tales minerales, sólo en de textura colomorfa, que de una manera especial se desarrolla en las zonas de stockwork o criaderos en masa. Estos minerales, como muchos otros minerales argentíferos, se funden bajo el rayo de la microsonda. En relación con lo anterior, cabe recordar que durante el microanálisis se utilizó un método especial, descrito anteriormente.

Con la ayuda del microanalizador electrónico se realizó 25 análisis de minerales de la serie acantita-aguilarita-naumanita (Tabla 1). En estos minerales el contenido de Se y S se intercambia isomórficamente uno a otro, con variaciones considerables: selenio desde 1.52 hasta 19.46% y azufre desde 2.19 hasta 13.19%. No se encontró a los miembros laterales de esta serie acantita (Ag$_2$S) y naumanita (Ag$_2$Se).

En la Figura 16 se presenta los resultados de los análisis con microsonda en el diagrama de composiciones Ag-Se-S y se observa que casi tenemos una serie ininterrumpida de puntos entre las composiciones teóricas de acantita, Ag$_2$S, y aguilarita, Ag$_2$SeS. En el intervalo entre naumanita y aguilarita, sólo hay dos composiciones (análisis 24 y 25). No obstante, aquí también puede esperarse una imagen de puntos intermitentes, si se realiza un microanálisis sistemático de este grupo en medios de estudio...
Figura 16.- Distribución de los minerales establecidos en el diagrama de composiciones del sistema Ag₂Se-Ag₂S (en %).

Figura 17.- Diagrama de fases para minerales del sistema Ag₂S-Ag₂Se (según Petruk et al., 1974), elaborado con los datos de Vassallo y Borodaiev (1982).

1.2 Ag₄SeSe cúbico + AGUILARITA

ACANTITA (Petruk et al., 1974)
ACANTITA (Gueth, 1891)
ACANTITA (Kieft y Oen, 1973)
INTERCICLOMIO AGUILARITA-ACANTITA (Petruk et al., 1974)
AGUILARITA (Petruk et al., 1974)
AGUILARITA (Main et al., 1972)
AGUILARITA (Gueth, 1891, 1892)
NAUMANITA (Petruk et al., 1974)
AGUILARITA-NAUMANITA (Vassallo y Borodaiev, 1982)

Por tanto, según Petruk y colaboradores (1974), no existe una serie isomorfa ininterrumpida de los minerales del sistema Ag₂S-Ag₂Se. Davison (1960) apoyó la posible existencia de tal serie isomorfa.

Los datos de horizontes diferentes de otros depósitos del distrito minero de Guanajuato. Por tanto, de acuerdo con los datos obtenidos, se señala una serie casi isomorfa ininterrumpida de los minerales del sistema Ag₂S-Ag₂Se. Davison (1960) apoyó la posible existencia de tal serie isomorfa.

Petruk y colaboradores (1974) estudiaron algunas menas de Guanajuato y efectuaron análisis con microsonda de minerales del grupo de la acantita-agularita (seis análisis), llegando a otras conclusiones. Estos autores piensan que entre las composiciones de la acantita, agularita y naumanita en el diagrama de fases del sistema Ag₂S-Ag₂Se (Figura 17) existen dos campos no homogéneos, en los límites de los cuales corresponden composiciones de soluciones sólidas; en temperaturas más bajas que 120°C se dividen y forman interciclistos estrechos de dos fases: agularita-acantita y naumanita-agularita. Las fronteras de los campos no homogéneos y homogéneos, de acuerdo con los autores citados, corresponden a las composiciones siguientes:

Acantita homogénea: Ag₂S-Ag₂Se Sₐ0.85 Sₑ₀.15
Soluciones sólidas agularita + acantita:
Ag₂S Sₐ0.85 Sₑ₀.15-Ag₂S Sₐ0.95 Sₑ₀.05
Agularita homogénea:
Ag₂S Sₐ0.95 Sₑ₀.05-Ag₂S Sₐ1.10 Sₑ₀.90
Soluciones sólidas naumanita + agularita:
Ag₂S Sₐ1.10 Sₑ₀.90-Ag₂S Sₐ0.12 Sₑ₀.88
Naumanita homogénea: Ag₂S Sₐ0.12 Sₑ0.88-Ag₂S Se

En el estudio presente, un análisis específico efectuado en todos los granos minerales mostrados en la
pantalla del tubo de rayos catódicos de la microsonda demostró la composición homogénea de todos los minerales de la serie acantita-agularita-naumanita. Ejemplo de lo anterior es un mineral de composición intermedia entre la agularita y la naumanita (análisis 25), que junto con el análisis 24 quedaría en el campo que erróneamente Petruk y colaboradores (1974) llamaron “naumanita + agularita”. La imagen del análisis 25, bajo electrones secundarios (Figura 18), comprueba en efecto la homogeneidad de tal mineral; también corroboran lo anterior las imágenes de rayos roentgen Ag Lα y Se Lα (Figuras 19 y 20).

El método que se utilizó en la investigación de la homogeneidad de los minerales analizados es muy sensible y exacto, mientras que los resultados de afectación química dependen del corte del mineral, lo que señalan Petruk y colaboradores (1974) en relación con la acan-

La covelita se encuentra sólo en el cuerpo Cedros de la Mina Las Torres. Está en forma de cristales muy pequeños junto a la pírita, calcopirita, esfalerita y agularita, y, además, está relacionada con procesos de enriquecimiento secundario.

ETAPAS DE MINERALIZACIÓN

En la Figura 21 se muestra un esquema global de las etapas de mineralización y del zoneamiento vertical en el distrito minero de Guanajuato. Se reconoce cuatro etapas, de las cuales tres son metálicas, aunque no todas están representadas en cada mina, porque ninguna alcanza la profundidad requerida menor que 1,700 m sobre el nivel del mar.
AGRADECIMIENTOS

Se agradece al Académico V. I. Smirnov y al Do- cente Yu. S. Bolotadev las facilidades y ayuda otorgadas en el Departamento de Geología y Geoquímica de Yacimientos Minerales de la Universidad Estatal de Moscú, M. V. Lomonosov, para la realización de este artículo.

Los directivos de la Compañía Minera Fresnillo y de la Sociedad M. M. Santa Fe de Guanajuato permitieron gentilmente realizar el muestreo en sus minas. El Dr. G. K. Lowther mostró gran interés por estos estudios. A todos ellos se agradece sinceramente su cooperación. El autor recibió los beneficios de una beca del Gobierno de la Unión de Repúblicas Socialistas Soviéticas (U.R.S.S.) y del Consejo Nacional de Ciencia y Tecnología (CONEYT).

REFERENCIAS BIBLIOGRÁFICAS

MINERALOGÍA DE LA VETA MADRE, GUANAJUATO

Manuscrito presentado: 8 de julio de 1986.
Manuscrito corregido devuelto por el autor: 23 de octubre de 1986.
Manuscrito aceptado: 27 de noviembre de 1986.