ESTUDIO HIDROGEOQUIMICO DE LA PORCIÓN CENTRO-ORIENTAL DEL VALLE DEL MEZQUITAL, HIDALGO

Rodolfo del Arenal*

RESUMEN

El área de estudio está en el Valle del Mezquital, Hidalgo; en ella se distinguen seis grandes grupos de rocas cuyas características hidrogeológicas, con diferentes porcentajes de permeabilidad, se comparan con las características hidrogeoquímicas, representadas por las distintas facies químicas del agua que circulan por ellos. Se manifiesta la existencia de tres mantos acuíferos, su litología, comportamiento y la influencia de las aguas de riego (aguas negras) dentro del sistema hidráulico general en relación con la estructura geológica del área.

La interpretación de los análisis químicos de las muestras señala que se tienen tres grupos hidrogeoquímicos, entre los que destacan: Na > Mg > Ca, HCO₃ > Cl > SO₄, que indican una familia de aguas sódica-bicarbonatada, predominante en casi todo el área de estudio. Los grupos restantes están representados por las familias mixta-bicarbonatada y calcica-bicarbonatada, de lo que se desprende que la facies aniónica está perfectamente definida por los bicarbonatos y la catiónica manifiesta un intercambio en las aguas entre el sodio y el calcio, con sus mezclas correspondientes.

En este artículo se presenta la interpretación de los análisis químicos por medio de diagramas semilogarítmicos, estableciéndose comparaciones entre las aguas superficiales (incluidas las de riego) y subterráneas.

RESUME

L’aire d’étude se trouve localisée dans le dénommé Valle del Mezquital, Hidalgo, où on peut distinguer six groupes de roches où ses caractéristiques hydrogéologiques avec différent pourcentages de permeabilité, se comparant avec les caractéristiques hydrogéochimiques, représentées par les différentes facies chimiques de l’eau qui circulent pour eux. De cette manière, on met en evidence l’existence de trois nappes aquifères, sa litologie, comportement en l’influence en eux des eaux d’arrosage (eaux noires) dans le système hydraulique général en relation avec l’structure géologique de l’aire.

L’interprétation des analyses chimiques des échantillons signale qu’il y a trois groupes hydrogéochimiques, parmi lesquels détachent: Na > Mg > Ca, HCO₃ > Cl > SO₄, qui indiquent une famille sodique-bicarbonatée prédominant en presque toute l’aire d’étude. Les groupes qui restent sont représentés par les familles mixte-bicarbonatée et calcique-bicarbonatée, où on détache que la facies anionique est parfaitement définie pour les bicarbonates, et la cationique manifeste un interchange dans les eaux parmi le sodium et le calcium, avec ses mélanges correspondants.

On présente l’interprétation des analyses chimiques au milieu de diagrammes semilogarithmiques, dans lequel on établit la comparaison parmi les eaux superficielles (incluant les eaux d’arrosage) et les souterraines.

INTRODUCCION

Habiendo revisado sobre el terreno las estructuras geológicas desde el punto de vista de sus características de permeabilidad y porosidad, que nos permiten clasificar posibles zonas de escorrimientos e infiltración y después de haber realizado un inventario de todos los puntos de agua naturales y artificiales existentes representados por ríos, arroyos, manantiales, norias, pozos y presas, en este artículo se destaca la importancia de los estudios hidrogeoquímicos, que podrían aportar información complementaria valiosa y confirmar otro tipo de observaciones con fines de investigación.

Así, pueden obtenerse indicaciones útiles para comprender el origen del flujo subterráneo, la red hidrográfica, la existencia de circulaciones termales, sean o no independientes, así como la clasificación de familias de aguas y grupos hidrogeoquímicos. La información se ha vaciado en los diagramas semi-logarítmicos que se presentan, y permite apreciar dichas indicaciones en forma objetiva.

Por otra parte, en todo estudio hidrogeológico, independientemente de su finalidad específica, la geoquímica de las aguas subterráneas es de interés básico debido, sobre todo, a que se debe considerar siempre la obtención de agua de una calidad apropiada a la demanda.

En el caso que nos ocupa, por tratarse de una región árida, casi siempre se destaca la calidad química de sus aguas, más que los volúmenes que de ella puedan ser utilizados.

LOCALIZACION

El área de estudio se localiza en el Valle del Mezquital, situado en la parte centro-oriente del Estado de Hidalgo (Figura 1).

Para el presente artículo se eligió aquella región cuya cartografía hidrológica ya había sido ejecutada (del Arenal, 1978). El área, con una superficie aproximada de 2,200 km², está comprendida entre los 20°00' a 20°30' N y 98°55' a 99°20' W y limitada al norte por el Valle de Ixmiquilpan, el poblado del mismo nombre y los cerros Huandri, El Ventorrillo, Pozuelos, Gaxido, El Aguila y Monte Noble; al este, por el Va-
lle y la Sierra de Actopan; al sur por los cerros Xicuco y El Gorrión y por los poblados Taxcoapan, Tetepango y Ajacuba, y al oeste por la Sierra de Xinthé.

En los extremos septentrional y meridional de la zona, donde hay una elevación mayor, predomina el clima subhúmedo y semicálido con una precipitación del orden de 500 mm y una temperatura media anual de 15°C. En la parte central es semiárido y semifrío, con una precipitación del orden de 400 mm y una temperatura de 18°C.

El acceso a la zona de estudio se lleva a cabo a través de una red adecuada de carreteras y caminos secundarios. Entre ellas se cuenta la Carretera Federal Núm. 85 (México-Laredo) que une a los poblados de El Arenal, Actopan, Caxuxi, Lagunilla, Patria Nueva, Yolotepec e Ixmiquilpan; la carretera México-Querétaro, en donde por Tepeji del Río se llega a Tula y de aquí a Tlahuelilpan, Mixquiahuala y Progreso, uniéndose a la anterior en Ixmiquilpan. Transversalmente se encuentra la carretera que une a Progreso con Actopan. Existen además algunos ramales que permiten el fácil acceso a la zona de estudio. Por otra parte, se tiene el ferrocarril que une a Pachuca con Tula y corre por la ladera septentrional del cordon de sierras que separa al Valle del Mezquital de la Cuenca de México; su función principal es la carga de cemento y minerales.

![Figura 1.- Mapa de localización.](image)

FISIOGRAFÍA

El Valle del Mezquital tiene un relieve ondulado en los extremos septentrional y meridional, en lo que corresponde a sus límites; en la parte central su relieve es plano.

El Valle de Tula-Actopan es la planicie principal del Valle del Mezquital, abarcando casi la totalidad de la zona de riego. Se inicia en la ciudad de Tula, con 2,030 m de altura, descendiendo suavemente hasta el poblado de Mixquiahuala con 1,999 m. Se encuentra limitado al norte por la Sierra de San Miguel de la Cal, al oeste por la Sierra de Xinthé, al este por la Sierra de Pachuca, al sureste por la Sierra de Chicavasco y al sur por los lomeríos de Tepeji del Río.

El Valle de Ixmiquilpan, situado al norte del área de estudio, tiene una altura de entre 1,500 y 1,850 m, es ligeramente ondulado y con un declive suave hacia el oeste; se le dio este nombre porque ocupa casi la totalidad del municipio de Ixmiquilpan.

Existen sierras aisladas como la de San Miguel de la Cal, que abarca una superficie aproximada de 18 km², siendo el Cerro San Miguel el de mayor elevación (2,800 m) dentro del valle. Estas sierras separan el Valle de Actopan del de Ixmiquilpan y el de Actopan del de Tula. La Sierra de Xinthé alcanza una altitud máxima de 2,700 m. En la serranía de Sombrerete se tienen también otras eminencias como los cerros Panales, Alberto, Xinthé y Deca.

Todos los valles mencionados tienen una dirección predominante noroccidental y escurren sus aguas al Río Tula.

HIDROGRAFÍA

La zona de estudio es drenada por los ríos Tula y Actopan, pertenecientes a la cuenca del Mocotezuma-Pánico.

El Río Tula, considerado solamente desde el poblado de Atengo donde toma una dirección noroccidental, recibe, después de pasar por el poblado de Tezontepec de Aldama, el aporte más importante constituido por el Río Salado, cuyo origen son las aguas negras que provienen del Estado de México, por el Canal del Desagüe a través de los túneles de Tequisquiac. Este río, con una dirección sur a norte y pasando por las cercanías de los poblados de Attitalaquía, Taxcoapan, Tetepango y Tlahuelilpa de Ocampo, se une al Río Tula en el punto mencionado. El Río Tula, cuyo curso arriba tiene el nombre de Río Tepeji, aporta sus aguas a las presas Taxhimay, Requena y Endhé y después de recibir las aguas del Río Salado, prosigue su curso prácticamente hacia el norte para obtener otros aportes de menor importancia. En las cercanías del poblado de Ixmiquilpan recibe al Río Actopan, de cabezas muy diversificadas y toma el nombre del poblado en donde todas las aguas forman el cauce principal al descendir de las sierras de Pachuca y Chicavasco. Después de recibir a los ríos Salado y Actopan, el Río Tula comparte sus aguas, a la altura del poblado de Zimapán, con el Río San Juan del Río y con el aporte posterior del Río Hondo constituye el Río Mocotezuma. Este último es uno de los afluentes más importantes del Río Pánico que desemboca en el Golfo de México. El Río Tula es el único de régimen permanente durante todo el año, ya que se alimenta por corrientes que descienden de la parte montañosa del Valle de México y por las aguas negras provenientes del Estado de México.

El Río El Salto es el origen del Río Tula y lleva este nombre desde la salida artificial del tajo de Nochistongo, en donde toma las aguas subterráneas de los ríos Cuauitlán y Tepoztlán. Se abastece, además, de las aguas de los ríos Tepeji y Cosconete o Tlautla, que provienen de la parte montaña de del noroeste de la Cuenca de México; a la altura del vaso de la Presa Endhé obtiene las aguas del Río Rosas, el cual es alimentado a su vez por el Arroyo Trancas. A partir de este punto se le conoce con el nombre de Río Tula y sigue su recorrido en la zona de estudio de sur a norte, y en las cercanías del poblado de Ixmiquilpan recibe sobre su margen derecha el aporte del Río Actopan.

CARACTERÍSTICAS HIDROGEOLOGICAS

Desde los puntos de vista geológico e hidrológico se han distinguido en el área seis grandes grupos de rocas. En este
estudio sólo se tendrá en cuenta el papel que juegan éstos en relación directa con las aguas subterráneas (Figuras 2 y 3). Las características hidrogeológicas de estos grupos se pueden resumir de la manera siguiente (del Arenal, 1978).

— Calizas de origen marino, lentes y nódulos de pedernal y capas dolomíticas de edad cretácea temprana, con una permeabilidad mediana que aflora en las partes central y septentrional.

— Calizas con intercalaciones de arcilla y nódulos de pedernal y capas interesratificadas de lutita, limolita, areniscas y calizas de origen marino de edad cretácea tardía de permeabilidad débil, aflorando principalmente en las partes central y septentrional.

— Conglomerados de caliza y derrames de lava y tobas de edad ecocénica y permeabilidad mediana, aflorando en la parte central.

— Rocas volcánicas representadas por riolitas, basaltos, andesitas y rocas volcánicas no diferenciadas, del Mioceno-Oligoceno, permeabilidad nula formando importantes afloramientos principalmente en las partes meridionales, noroccidental, nororiental, oriental y occidental.

— Material clástico, lentes de caliza lacustre y cenizas volcánicas. Derrames de lava, brechas y cenizas asociadas, así como relaciones entre estos materiales de edad pliocénica que cubren la mayor parte del área con una permeabilidad no uniforme y medianos recursos en agua.

— Aluvión, lavas, cenizas volcánicas, derrames lávicos, brechas, calizas lacustres, yeso, travertino e interdigitaciones desordenadas de estos materiales de edad pleistocénica y del Holoceno que afloran principalmente a lo largo de las vegas del Río Tula y en los alrededores de los poblados de Actopan e Ximiquilpan; su permeabilidad se considera elevada.

MANTOS ACUÍFEROS

Dentro de los grupos de roca mencionados, los estudios efectuados han demostrado la existencia de tres mantos acuíferos. El primero es somero y de profundidad variable, localizado irregularmente en los aluviones cuaternarios de origen fluvial, cuya recarga proviene principalmente de las infiltraciones de las aguas de lluvia, de las aguas de riego (aguas negras) y por aporte lateral subterráneo (la contribución de las aguas negras se realiza con mayor intensidad en la parte suroccidental). Este primer manto acuífero se considera libre o no confinado.

El segundo manto acuífero está localizado principalmente en los basaltos y se piensa que está parcialmente confinado, aunque un estudio más amplio y detallado deberá confirmar lo anterior y delimitar su extensión y posición estructural.

El tercer manto se localiza en las calizas cretácicas y se infiere que en algunas ocasiones se manifiesta como acuífero libre y en otras como acuífero parcial o completamente confinado. Será necesario también un estudio más amplio y exhaustivo para comprender su comportamiento hidráulico; sin embargo, el autor considera que este comportamiento está en gran parte ligado a la zona artesiana de San Salvador, localizada prácticamente en el centro del área, ya que en ella donde es evidente, desde hace mucho tiempo, un artesianismo casi constante.

Se han realizado algunas investigaciones sobre el punto anterior (Payne, 1975; Andreu et al., 1980) y, aunque se han despejado muchas dudas con la aplicación de técnicas isotópicas en aguas superficiales y subterráneas para conocer su origen, edad e interacción con las aguas de riego, no se ha logrado aclarar completamente el comportamiento hidráulico; aunque sí se ha puesto en evidencia la complejidad del problema.

La mayor parte de las muestras recolectadas en este estudio pertenecen al acuífero en basaltos. Las aguas en muchos sitios se encuentran mezcladas con las aguas de riego. En otros lugares ha sido difícil determinar el comportamiento hidráulico de este manto, como en la zona de San Salvador, donde los pozos perforados manifiestan artesianismo sin que se pueda aclarar completamente hasta el momento dicho fenómeno. Sin embargo se considera que la influencia de las aguas de riego, así como el flujo general, han condicionado el mismo.

Por lo que respecta al acuífero en calizas, se piensa que, aunque en menor proporción, existe también la influencia de las aguas de riego en determinados puntos, siendo difícil establecer la zonificación correspondiente. Muchas de estas aguas se derivan de manantiales que pueden “reciclarse” hidráulicamente en un momento dado, coadyuvando así al desconocimiento de dicho comportamiento.

Además, debe considerarse el termalismo de algunos manantiales muy cercanos como Pathé, Humedades y Dios Padre, sin que se tenga hasta el momento una explicación o conocimiento lógico ligado, en su conjunto, a la estructura geológica del área.

La presencia de calizas cretácicas tempranas de la Formación El Doctor en el Cerro de la Cal (Figura 4) muestra, según lo señalado por Fries (1962) en su sección A-B de la Hoja Pachuca 14Q-e(11), la existencia a profundidad en el Valle de Actopan de estructuras que el autor considera favorables para la posible acumulación de agua confinada y que están representadas en esa zona por el salinero de Chalmita (Figura 5a). Lo anterior se ha confirmado parcialmente con los datos obtenidos de las perforaciones existentes, que han puesto en evidencia manantiales productores de aguas de potencialidad variable, según sea el acomodo estratigráfico de las formaciones del área.

Sin embargo, el examen de las diferencias relativa- mente grandes en la profundidad de los niveles de agua de esta zona, entre el acuífero en basaltos (pozo Actopan con 400 m de p.t.) y el acuífero en calizas (poco Pénix 7 con 215 m de p.t.), con una distancia aproximada entre ellos de 8 km, permite pensar en la existencia de una falla de tipo normal como la representada en la sección C-D de la Figura 5b (Z. de Cerna, comunicación verbal).

Por otra parte, el estilo de deformación de los bordes de plataforma, conocido por los estudios realizados un poco más al norte de esta área (plataforma de El Doctor y parte oeste de la plataforma de Valles-San Luis Potosí), son cabalgaduras de bajo grado permitiendo la posibilidad de una representación adicional como la indicada en la sección E-F de la Figura 5c (M. Carrillo, comunicación verbal).

Lo anterior nos lleva a ordenar, dentro del marco estructural y considerando los potenciales hidráulicos de los acuíferos, una carta de la superficie piezométrica con curvas equipotenciales (Margat, 1982, comunicación escrita).

La existencia de una familia química predominante y la complejidad en su interpretación permiten pensar en zonas de recarga diferentes, tanto para el acuífero en basaltos como para el acuífero en calizas y tomar en cuenta la posibilidad de interconexiones hidráulicas subterráneas, probablemente de cuencas vecinas.
CARACTERISTICAS GEOLOGICAS

LEYENDA

PLEISTOCENO Y RECIENTE

Qal

Alevín, levas, cenizas volcánicas, derrames ígneos, brechas, cenizas lacustres, yano, travertina. Interdigitaiones desordenadas de estos materiales.

PLIOCENO

Tet y Tpd

OLIGOCENO

Tomv y Tomv

Grupo Pachucu - Rocas volcánicas, riolitas, basaltos y andesitas (Tomv) y rocas volcánicas no diferenciadas (Tomv).

EOCENO

Toe

Grupo El Morro - Conglomerados de caliza. Derrames de lava y tepetas.

MIOCENO

Ksm

Formación Mescla - Capas interstratificadas de lutita, limo, argilina, arenas y calizas de origen marino.

SUPERIOR

Kes

Formación Soyatol - Calizas con intercalaciones de arcilla y nódulos de pedernal

INFERIOR

Kid

Formación El Doctor - Caliza de origen marino. Lentes y nódulos de pedernal y capas de caliza.

SÍMBOLOS

A

Contacto geológico

B

Faila mostrando el lado hundido

C

Antínclinal recostado

D

Sinclinal

E

Mine de cota

F

BASE GEOLOGICA: Carta Geológica de México, serie de 1:100,000; HOJA PACHUCA 14q-6 (II)
por: CARL FRIES, JR. (1962)

CARACTERÍSTICAS HIDROGEOLOGÍCAS

FORMACIONES GEOLÓGICAS - PROPIEDADES DE LOS ACUÍFEROS

<table>
<thead>
<tr>
<th>ESTRATIGRAFÍA</th>
<th>LITÓLOGIA</th>
<th>PERMEABILIDAD</th>
<th>RECURSOS EN AGUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLEISTOCENO</td>
<td>Aluviones de orígen fluvial</td>
<td>ELEVADA</td>
<td></td>
</tr>
<tr>
<td>Y RECENTE</td>
<td>Aluviones y material sílico con textura lombriz, cemento, cuarzos, etc.</td>
<td>MEDIANA</td>
<td></td>
</tr>
<tr>
<td>PLIOCENO</td>
<td>Material cólico predominante con capas de arenas y cantos de leña</td>
<td>NULA</td>
<td></td>
</tr>
<tr>
<td>MIOCENO</td>
<td>Derivados de los yacentes asociados a depósitos bentónicos, sedimentos, capas de evaporación</td>
<td>NULA</td>
<td></td>
</tr>
<tr>
<td>OLIGOCENO</td>
<td>Cálizos, marías y capas de cemento</td>
<td>MEDIANA Y DEBIL</td>
<td></td>
</tr>
<tr>
<td>CRETACICO</td>
<td>Cálizos marías y capas de cemento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BASE HIDROGEOLOGICA por: RODOLFO DEL ARENAL

SÍMBOLOS

TOPOGRÁFICOS
- Poblado
- Carretera pavimentada
- Camino vecinal
- Ferrocarril
- Ruta
- Dirección de flúo subterráneo
- Zona pantanosa
- Divisa hidrográfica

HIDROGRÁFICOS
- Río
- Arroyo
- Monzón
- Presa
- Canal

PUNTOS DE AGUA

Figura 3.- Carta hidrogeológica del área de estudio.
Figura 4. - Cerro de La Cal. Afioramiento principal en el área de la Formación El Doctor, representado por calizas del Cretácico Inferior.

CARACTERISTICAS HIDROGEOQUIMICAS

Diferentes autores que han estudiado la importancia que representan los estudios geoquímicos (Schoeller, 1956, 1963; Stretta, 1961; Stretta y del Arenal, 1961; Arad, 1966, 1967) han coincidido en que, para demostrar la relación que existe entre la composición química y el origen de los "yacimientos" de las aguas subterráneas, se pueden presentar dos posibilidades:

La primera sería tomar en cuenta los datos químicos obtenidos y, a partir de ellos, deducir el origen y naturaleza de los yacimientos de las aguas. La segunda sería deducir la composición química, a partir del origen de las aguas y de la naturaleza de sus yacimientos.

La experiencia ha demostrado que el primer camino no es indicado, debido a la participación de otros factores que ocultan y, sobre todo, alteran las relaciones directas de la composición química. Entre ellos destacan fundamentalmente el
clima y otros fenómenos modificadores como la dilución, la concentración por evaporación y disolución, la reducción y la oxidación. Por otro lado, no se debe olvidar la velocidad de circulación de las aguas en el subsuelo que juega un papel muy importante permitiendo, cuando es lenta, un mayor enriquecimiento en la composición química de las aguas por el mayor contacto con la roca por donde transita. Sobre este punto se considera que realmente es muy difícil establecer una clasificación genética basándose exclusivamente en la composición química de las aguas subterráneas, ya que definitivamente existen más fenómenos que intervienen, como la misma composición química (Schloetter, 1963).

De esta manera, los distintos fenómenos señalados representados por los tipos de clima, suelo y vegetación, ligados a las características hidrogeológicas del terreno, permiten que cuando se produzcan la infiltración, percolación y posterior circulación de las aguas de lluvia (alimentación vertical) o el aporte lateral condicionado a la estructura del subsuelo, las aguas, en su recorrido lento o rápido, presenten características químicas directamente relacionadas con los terrenos en que transitán.

Por otra parte, dichos fenómenos tienden a agruparse en zonas climáticas, geológicas e hidrológicas, en donde cada una varía la composición química. Así, se tienen factores litológicos que dependen de la geología. La concentración por disolución, tomando en cuenta el tiempo de contacto con la roca encajonante, correspondería a la zona hidrológica, siendo la concentración por evaporación del dominio de la zona climática. Por lo anterior, se concluye que la litología del yacimiento (manto acuífero) es el factor inicial del origen de la composición química, siendo la concentración el factor final y esencial que constituye las facies hidrogeoquímicas, características de las diferentes zonas de estudio (del Arenal, 1962).

FACIES HIDRO GEOQUÍMICAS

Terrenos volcánicos.- Las muestras de agua recolectadas, que en su mayoría corresponden a norias, pozos y manantiales, provienen del manto acuífero en basaltos y la interpretación geoquímica sitúa a la mayor parte de ellas dentro de la familia sodica-bicarbonatada (Tabla 1).

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Análisis</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>Cl</th>
<th>SO$_4$</th>
<th>HCO$_3$</th>
<th>Familia de Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozo San Salvador</td>
<td>179</td>
<td>100</td>
<td>48</td>
<td>197</td>
<td>236</td>
<td>49</td>
<td>549</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo San Salvador</td>
<td>181</td>
<td>116</td>
<td>51</td>
<td>197</td>
<td>251</td>
<td>51</td>
<td>549</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo San Salvador</td>
<td>232</td>
<td>144</td>
<td>53</td>
<td>222</td>
<td>335</td>
<td>78</td>
<td>549</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo San Salvador</td>
<td>236</td>
<td>112</td>
<td>53</td>
<td>219</td>
<td>319</td>
<td>102</td>
<td>475</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Xochitlán 17</td>
<td>134</td>
<td>35</td>
<td>13</td>
<td>219</td>
<td>136</td>
<td>106</td>
<td>415</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Mango 90</td>
<td>71</td>
<td>56</td>
<td>53</td>
<td>392</td>
<td>245</td>
<td>78</td>
<td>758</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Mangas 11</td>
<td>135</td>
<td>72</td>
<td>86</td>
<td>311</td>
<td>308</td>
<td>146</td>
<td>755</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Mangas 27</td>
<td>224</td>
<td>51</td>
<td>70</td>
<td>260</td>
<td>261</td>
<td>97</td>
<td>754</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Mangas 29</td>
<td>225</td>
<td>53</td>
<td>62</td>
<td>323</td>
<td>267</td>
<td>121</td>
<td>738</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Mangas 12</td>
<td>137</td>
<td>72</td>
<td>86</td>
<td>372</td>
<td>305</td>
<td>112</td>
<td>654</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo El Mese 18</td>
<td>138</td>
<td>29</td>
<td>31</td>
<td>87</td>
<td>59</td>
<td>52</td>
<td>344</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Huaxto 4</td>
<td>142</td>
<td>155</td>
<td>56</td>
<td>205</td>
<td>350</td>
<td>120</td>
<td>410</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Manantial Tezontepc 5</td>
<td>141</td>
<td>36</td>
<td>14</td>
<td>95</td>
<td>84</td>
<td>36</td>
<td>267</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Manantial Cerro Colorado</td>
<td>393</td>
<td>69</td>
<td>32</td>
<td>192</td>
<td>222</td>
<td>94</td>
<td>496</td>
<td>Sódica - bicarbonatada</td>
</tr>
</tbody>
</table>

Todos los valores en mg/l

Sin embargo, se observan en algunas zonas aguas de mezcla, entre el agua propiamente del manto acuífero y las aguas de riego, que por infiltración y posterior percolación, han incrementado sus niveles, es decir, por el aporte de las aguas de riego (aguas negras), se tiene una notoria elevación en los niveles freáticos de la región, observándose igualmente aumento en los desgastes del Río Tula, sobre todo en determinadas estaciones hidrométricas, así como la aparición de manantiales, como el del Cerro Colorado de aguas frías que tiene, a juicio del autor, un importante papel en el comportamiento hidráulico del área.

Este manantial, localizado en la porción suroccidental del área, en las cercanías del Cerro Xicueco y del poblado Tlahuelilpan de Ocampo, debe su origen fundamentalmente a las aguas de riego y a las aportaciones de las aguas de la Presa Requena e infiltraciones de las aguas del Río Salado.

Para ilustrar lo anterior, se presenta el diagrama semilogarítmico que muestra la comparación química entre las aguas del manantial Cerro Colorado (Figura 6) y las aguas de riego, observándose un paralelismo en sus gráficas, que pone en evidencia a la misma familia química, independientemente de su concentración e induciéndonos a pensar que con el tiempo, las aguas en su contenido iónico pueden volverse semejantes a las aguas de riego por los aportes constantes, sobre todo del Río Salado.

Por lo que concierne a las aguas de la Presa Endhé, utilizando el mismo patrón comparativo (Figura 7), se piensa que también pertenecen al mismo sistema o área de influencia de las aguas negras, independientemente de los valores de concentración observados, debido a los aportes de los ríos Tautla, Rosas Michimaloya y El Salto, que en mayor o menor proporción derivan aguas de mezcla; así queda demostrada la influencia de las aguas negras en el área del Sistema Requena-Salado-Endhé.

Por otra parte, en el área en conjunto, las aguas de riego han determinado otras zonas, aunque de difícil interpretación química, delimitación, clasificación y cartografía.

La facies hidrogeoquímica de estos terrenos volcánicos,
considerando su litología —fase inicial— representada por corrientes basálticas y rocas volcánicas no diferenciadas, confiere con base en su composición, la fuente de sodio que recogen las aguas a su paso. La concentración —fase final— puede debese tanto a la disolución como a la evaporación correspondientes al tránsito y acumulación de las aguas y, la distribución de las facies, en este caso está sujeta al irregular comportamiento del sistema hidráulico generado por el aporte permanente de las aguas de riego.

Terrenos sedimentarios. Las muestras de agua recolectadas en este tipo de terrenos corresponden, en su mayoría, a manantiales y a algunos pozos como Chichimecas 13, Fénix 7, Capula 1 (fuera del área de estudio), Colonia Veracruz 21 y los Ixmiquilpan K-856 y K-828 (Tabla 2).

![Figura 6. Diagrama semilogarítmico mostrando la comparación entre las aguas del manantial Cerro Colorado y las aguas de riego (aguas negras).](image)

En el diagrama semilogarítmico que corresponde a los manantiales Tephé, Dios Padre y Las Humedades (Figura 8) y en el diagrama semilogarítmico de la Figura 9, que encierra las gráficas resultantes de los análisis de aguas tomados en los pozos Chichimeca 13 y Fénix 7, se ejemplifica lo dicho anteriormente ya que, siendo las líneas casi paralelas, independientemente de su concentración, se demuestra que pertenecen a la misma familia química de agua.

Terrenos aluviales. La interpretación de las muestras de agua tomadas en este tipo de terreno demostró también la predominancia de la familia sódica-bicarbonatada (Tabla 3, Figura 10), constatabándose por el paralelismo casi perfecto de sus gráficas.

Por lo que respecta a los valores de sólidos totales disuelto (STD), que pudieran aportar algún conocimiento adicional, su irregularidad es explicable por la presencia de las aguas de riego, que en forma permanente modifican los valores al incorporarse, por infiltración, en estos terrenos.

Sin embargo, conviene destacar que si se toman en conjunto la litología existente y el papel que juega el agua dentro de ella, es prácticamente imposible determinar un patrón zonal comparativo desde el punto de vista hidrogeoquímico; es decir, configurar áreas bien definidas en su contenido iónico a través de las familias de aguas correspondientes, porque no la distancia de un punto de agua a otro, superficial o subterráneo, ni la profundidad de los diferentes mantos acuíferos, son factores que coadyuvan a ello.

Ante dicha dificultad, se consideró conveniente establecer grupos hidrogeoquímicos (Arad, 1966) que permitieran
Tabla 2.- Resumen de la clasificación geoquímica (terrenos sedimentarios).

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Analizados</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>Cl</th>
<th>SO₄</th>
<th>HCO₃</th>
<th>Familia de Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manantial Dios Padre</td>
<td>63</td>
<td>34</td>
<td>23</td>
<td>104</td>
<td>68</td>
<td>87</td>
<td>286</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Manantial Las Humedades</td>
<td>64</td>
<td>56</td>
<td>22</td>
<td>108</td>
<td>96</td>
<td>79</td>
<td>349</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Manantial El Tephe</td>
<td>37</td>
<td>55</td>
<td>33</td>
<td>158</td>
<td>90</td>
<td>88</td>
<td>405</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Chichimecas 13</td>
<td>133</td>
<td>48</td>
<td>42</td>
<td>213</td>
<td>92</td>
<td>286</td>
<td>363</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Fenix 7</td>
<td>144</td>
<td>53</td>
<td>45</td>
<td>203</td>
<td>240</td>
<td>108</td>
<td>415</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Capula 1</td>
<td>132</td>
<td>100</td>
<td>12</td>
<td>152</td>
<td>187</td>
<td>67</td>
<td>386</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Ixmiqulpan (k-856)</td>
<td>60</td>
<td>26</td>
<td>6</td>
<td>225</td>
<td>119</td>
<td>84</td>
<td>424</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Pozo Ixmiqulpan (k-042)</td>
<td>42</td>
<td>15</td>
<td>5</td>
<td>341</td>
<td>156</td>
<td>67</td>
<td>603</td>
<td>Sódica - bicarbonatada</td>
</tr>
</tbody>
</table>

Todos los valores en mg/l

comprender el origen de las aguas, creando una relación directa con la naturaleza de sus yacimientos, así como el papel importante que tienen las aguas de riego (aguas negras) como modificadores adicionales de los comportamientos hidráulicos e hidrogeoquímicos en el área de estudio.

HCO₃ > Cl > SO₄, que indica una familia química de agua sódica-bicarbonatada que es, con base en los porcentajes obtenidos, la predominante en casi toda el área en estudio. Considerando los mismos porcentajes, la segunda familia química en importancia corresponde a aguas mixtas-bicarbonatadas y la tercera a aguas cálcicas-bicarbonatadas.

Figura 8.- Diagrama semilogarítmico. Gráficas resultantes de las muestras de agua tomadas en manantiales.

Figura 9.- Diagrama semilogarítmico. Pozos y manantiales localizados en terrenos sedimentarios.

GRUPOS HIDROGEOQUÍMICOS

El establecimiento de los grupos hidrogeoquímicos se realizó con base en 90 muestras de agua procedentes de ríos, manantiales, canales, norias y pozos.

La interpretación de los análisis químicos de dichas muestras de agua (Tablas 1, 2 y 3) pone en evidencia la existencia de tres grupos hidrogeoquímicos (Figura 11), destacando dentro de ellos el correspondiente a: Na > Mg > Ca;

De lo anterior se desprende que la facies aniónica está perfectamente definida con los bicarbonatos, mientras que la catiónica manifiesta un intercambio en las aguas entre el sodio y el calcio, con sus mezclas correspondientes, difícil de interpretar y clasificar y sobre todo difícil de representar cartográficamente, por lo que se le denomina mixta.

Los análisis cuya interpretación refleja que son aguas mezcladas (mixtas) incluyen muestras de agua de corrientes
superficiales y de corrientes subterráneas, de poca o mucha profundidad, obtenidas en norias y pozos. La litología de los mantos acuíferos existentes es volcánica y sedimentaria; esta litología no establece diferencia geoquímica alguna y tampoco la presentación gráfica de los diagramas semilogarítmicos, debido a la ausencia de paralelismo en las gráficas.

Tabla 3.- Resumen de la clasificación geoquímica (terrenos aluviales).

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Análisis</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>Cl</th>
<th>SO₄</th>
<th>HCO₃</th>
<th>Familia de Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Río Tula - Ixmiquilpan</td>
<td>594</td>
<td>59</td>
<td>29</td>
<td>106</td>
<td>108</td>
<td>82</td>
<td>406</td>
<td>Sódica mixta - bicarbonatada</td>
</tr>
<tr>
<td>Río Tula - Chilesautla</td>
<td>216</td>
<td>50</td>
<td>41</td>
<td>164</td>
<td>161</td>
<td>75</td>
<td>489</td>
<td>Sódica mixta - bicarbonatada</td>
</tr>
<tr>
<td>Río Tula - Tlacotipilco</td>
<td>217</td>
<td>47</td>
<td>41</td>
<td>159</td>
<td>152</td>
<td>76</td>
<td>489</td>
<td>Sódica mixta - bicarbonatada</td>
</tr>
<tr>
<td>Río Tula - Tezontepec</td>
<td>595</td>
<td>42</td>
<td>17</td>
<td>52</td>
<td>30</td>
<td>40</td>
<td>294</td>
<td>Sódica mixta - bicarbonatada</td>
</tr>
<tr>
<td>Río Tula - Mixquiabuala</td>
<td>215</td>
<td>53</td>
<td>40</td>
<td>93</td>
<td>104</td>
<td>57</td>
<td>366</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Río Salado - Atitalaquía</td>
<td>598</td>
<td>27</td>
<td>29</td>
<td>440</td>
<td>336</td>
<td>92</td>
<td>779</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Río Salado - Tlahuelilpan</td>
<td>213</td>
<td>49</td>
<td>114</td>
<td>201</td>
<td>205</td>
<td>60</td>
<td>763</td>
<td>Mixta - bicarbonatada</td>
</tr>
<tr>
<td>Río Salado - Atotonilco</td>
<td>211</td>
<td>53</td>
<td>101</td>
<td>203</td>
<td>254</td>
<td>41</td>
<td>729</td>
<td>Sódica mixta - bicarbonatada</td>
</tr>
<tr>
<td>Noria k-946 (Zona 1)</td>
<td>46</td>
<td>11</td>
<td>4</td>
<td>305</td>
<td>120</td>
<td>88</td>
<td>530</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Noria Extra 2 (Zona 1)</td>
<td>45</td>
<td>13</td>
<td>7</td>
<td>281</td>
<td>131</td>
<td>66</td>
<td>528</td>
<td>Sódica - bicarbonatada</td>
</tr>
<tr>
<td>Noria k-783 (Zona 4)</td>
<td>18</td>
<td>42</td>
<td>22</td>
<td>124</td>
<td>127</td>
<td>52</td>
<td>415</td>
<td>Sódica - bicarbonatada</td>
</tr>
</tbody>
</table>

Todos los valores en mg/l

En el diagrama semilogarítmico de la Figura 12 se presenta un ejemplo de lo anterior, ya que a pesar de ser muestras de agua tomadas en puntos distantes, con litología radicalmente diferente, el paralelismo de las líneas es casi perfecto, independientemente de la concentración. La interpretación indica la misma familia de agua sódica-bicarbonatada.

Lo anterior quizás pudiera aclararse tomando en cuenta la existencia en la zona de estudio de una litología en general muy diversa, en donde las arcillas actúan como materiales intercambiables —intercambio iónico— y desarrollan procesos de disolución. La casi total existencia de la familia química de aguas sódica-bicarbonatada podría entonces explicarse. En otras palabras, la presencia posiblemente de un intercambio iónico del calcio con el sodio en las aguas y en las arcillas, cuando el movimiento de ellas se realiza a través de las diferentes interdigitaciones arcillosas y calcáreas en el subsuelo, originaría un cambio gradual que podría ser representado, primeramente, con una facies cálcica, seguida por una calcíco-sódica, para continuar con una sódica-cálcica y, finalmente, sódica (Back, 1966).

El sodio, que es un elemento del grupo de los minerales alcalinos y forma parte de buen número de silicatos, aumenta su concentración, como aquí se presume, por el efecto de la evaporación, aplicándose también a los valores encontrados en HCO₃.

La presencia de facies diversas ha sido condicionada a la litología existente; si consideramos además las características del sistema hidráulico de la zona examinadas tanto vertical como horizontalmente y, dentro de ellas, la zona de recarga, el flujo subterráneo, el almacenamiento y las salidas (naturales y artificiales), obtendremos la distribución de las facies.

Además debemos tomar en cuenta otro proceso modificador representado por el aporte permanente de las aguas de riego (aguas negras), que definitivamente ha contribuido a la recarga de los mantos acuíferos y cuyos análisis químicos, al ser interpretados, corresponden también a la misma familia sódica-bicarbonatada.

Los altos contenidos de HCO₃ en las aguas analizadas apoyan lo anterior, ya que muchas sobreponen los valores límite, indicando y confirmando que las aguas de riego (aguas negras) actúan como proceso modificador debido a la materia orgánica generadora de CO₂.

AGUAS NEGRIAS

Desde principios del siglo XX, el Río Tula recibe las aguas negras del Valle de México mediante obras construidas por el hombre. Estas aguas son transportadas por el Gran Ca-
nal del Desagüe, los túneles viejo y nuevo de Tequisquiay y el emisor central (DDF, 1974). Incrementan el caudal del Río Salado, en cuyo curso aguas abajo y a través de varias presas derivadoras y canales principales y secundarios, descargan sus aguas en el Río Tula cerca del poblado de Tezontepec de Aldama. El aporte, vía emisor central, se efectúa por medio del Río El Salto, afluentes del Río Tula, en el punto de salida de las aguas de la Presa Requena.

Las aguas negras, empleadas como recurso hidráulico, no como desperdicio y formando parte del Plan Hidráulico para el Valle de México, se definen como “...las aguas degradadas por su empleo en usos municipales y pecuarios, mezcladas o no con aguas superficiales, subterráneas o de lluvia...”, son utilizadas para riego en el Valle del Mezquital, Hidalgo, contribuyendo a su desarrollo agrícola (Publicaciones Núms. 9 y 3 de la CHCVM, 1964 y 1966).

Como se dijo en párrafos anteriores, la infiltración de estas aguas incrementó los niveles freáticos de los manto acuíferos existentes y dio lugar a la aparición de nuevos puntos de agua, como el manantial Cerro Colorado.

Se han realizado numerosos análisis y estudios de las aguas negras en el Valle del Mezquital desde 1962, con el objeto de asegurar al máximo la utilidad requerida (CHCVM, 1964, 1966; SRH, 1967).

CONCLUSIONES

Se concluye la existencia de tres manto acuíferos ligados al comportamiento hidráulico y a la estructura geológica general del área, aunque difíciles de precisar por la ausencia de datos y estudios detallados, especialmente en la zona de San Salvador dentro del Valle de Actopan. Estos estudios deberán incluir una carta de la superficie piezométrica en la que se observe la conducta de las curvas equipotenciales, para deducir zonas de recarga diferentes entre los manto acuíferos y la existencia de conexiones hidráulicas subterráneas entre cuencas vecinas.

Los manto acuíferos localizados en terrenos volcánicos están contaminados por las aguas de riego infiltradas, observándose con mayor intensidad al surponiente del área (Man-
gas, Huitel). El mismo fenómeno se produce con el manantial Cerro Colorado y, en menor proporción, con los mantos acuíferos localizados en terrenos sedimentarios.

A pesar de contar con más de 120 análisis químicos y su interpretación por medio de diagramas semilogarítmicos, resulta muy difícil establecer un patrón zonal comparativo de las facies hidrogeológicas, ya que éstas se presentan en forma desordenada.

En algunos análisis se observó una deficiencia de aniones con respecto a los cationes que podría deberse a la contaminación por detergentes, los cuales están constituidos por radicales orgánicos aniónicos que probablemente correspondan al exceso de cationes (E. Schroeder, comunicación escrita, 1982).

Los valores altos en el contenido de HCO₃ en algunos análisis podrían deberse a la presencia de material orgánico generadora de CO₂ y los valores constantes, a la posibilidad de un equilibrio con la tensión del CO₂ de la atmósfera y del suelo agrícola (E. Schroeder, comunicación verbal). Se considera que la alta concentración del sodio se deba al efecto de la evaporación y podrá aplicarse también a los valores encontrados en el HCO₃.

De los grupos hidrogeoquímicos establecidos, el que corresponde a la familia de agua sódica-bicarbonatada es el predominante en casi toda el área de estudio. La irregularidad en los valores de sólidos totales disueltos (STD) encontrados es explicable por la presencia de las aguas de riego, que en forma permanente modifican los valores, al incorporarse por infiltración, en los mantos acuíferos.

AGRADECIMIENTOS

REFERENCIAS BIBLIOGRÁFICAS

CHCVM, 1964, Clasificación y definición de términos relativos al agua y sus usos en la cuenca del Valle de México: Publicación núm. 9, p. 35-52.

Payne, B. R., 1975, La interacción del agua de riego con el agua subterránea y el Río Tulia en el Valle del Mezquital, Hgo.: Informe final de la Sección de Hidrología Isotópica de la OIEA para la SARH, p. 12-17.

- - - 1963, La classification géochimique des eaux: Association Internationale d’Hydrologie Scientifique, publication num. 64, p. 60-67.

