## Suplemento electrónico 26-2-02

al artículo

## Eficiencia relativa de 15 pruebas de discordancia con 33 variantes aplicadas al procesamiento de datos geoquímicos

por

Rosalinda González-Ramírez, Lorena Díaz-González y Surendra P. Verma

publicado en

Revista Mexicana de Ciencias Geológicas, 2009, 26(2), 501-515

## Contenido

| Definición del parámetro de evaluación de pruebas de discordancia: criterio de eficiencia relativa ( <i>relative efficiency criterion</i> , REC) |                                                                                                                                                                                                 |         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
|                                                                                                                                                  |                                                                                                                                                                                                 |         |  |  |
| Resultados del crite<br>de discordancia                                                                                                          | erio de eficiencia relativa REC calculado en las 14 categorías de pruebas                                                                                                                       | Pág. 4  |  |  |
| Figuras A1-A11                                                                                                                                   | Parámetro REC de las pruebas                                                                                                                                                                    |         |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                 |         |  |  |
| Ejemplo del cálcul                                                                                                                               | o del criterio de eficiencia relativa (REC)                                                                                                                                                     | Pág. 10 |  |  |
| Tabla A1                                                                                                                                         | Casos aplicables ( $n=16$ ) seleccionados de la base de datos para ilustrar el cálculo del parámetro REC. Esta tabla también presenta los casos que fueron exitosos en cada una de las pruebas. |         |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                 |         |  |  |
| Parámetro de evalu                                                                                                                               | ación del porcentaje de datos desviados                                                                                                                                                         | Pág. 17 |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                 |         |  |  |
| _Ejemplos del cálcu                                                                                                                              | lo del porcentaje de datos desviados                                                                                                                                                            | Pág. 18 |  |  |
| Tabla A2                                                                                                                                         | Resumen de la aplicación de todas las pruebas de discordancia a 14<br>casos seleccionados como ejemplos para ilustrar el cálculo del<br>porcentaje de datos desviados.                          |         |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                 | - D/ 10 |  |  |
| Figuras A12                                                                                                                                      | Valores del parámetro ROC calculado para las pruebas que evalúan<br>el(los) dato(s): más alto(s), más bajo(s), extremo(s) y todas las pruebas.                                                  | Pag. 19 |  |  |
| Resultados de la co<br>iteración y el tamaí                                                                                                      | orrelación lineal del criterio de eficiencia relativa REC de la primera<br>ño de la muestra estadística                                                                                         | Pág. 20 |  |  |
| Figuras A13-A16                                                                                                                                  | Resultados de la correlación lineal del (REC) <sub>1</sub> o (REC) <sub>g</sub> y el tamaño de la muestra                                                                                       |         |  |  |

# Parámetro de evaluación de pruebas de discordancia: criterio de eficiencia relativa (*relative efficiency criterion*, REC)

El criterio de eficiencia relativa de una prueba de discordancia para la primera iteración  $(REC)_1$  se define de la siguiente manera:

$$(\text{REC})_{1} = \frac{\text{numero de casos "exitosos" en la primera iteración}}{\text{numero de casos "aplicables" en la primera iteración}} \times 100$$
(A1)

En las iteraciones subsecuentes (p.ej., iteración 2, 3, 4 y etc.), el parámetro REC fue definido mediante la ecuación general:

$$(\text{REC})_{i} = \frac{\text{numero de casos "exitosos" en la iteración i}}{\text{numero de casos "exitosos" en la iteración (i - 1)}} \times 100$$
(A2)

Por ejemplo, el REC para la segunda iteración se expresa de la siguiente forma:

$$(\text{REC})_2 = \frac{\text{numero de casos "exitosos" en la segunda iteración}}{\text{numero de casos "exitosos" en la primera iteración}} \times 100$$
(A3)

Los parámetros REC subsecuentes (a partir de la iteración 2) fueron definidos con la Ec. general (A2) porque los casos aplicables para la segunda iteración son los mismos que resultaron exitosos en la primera iteración, como se indica en la ecuación A3. En el caso de las iteraciones subsecuentes (p. ej., tercera o cuarta iteración), el denominador del parámetro REC<sub>i</sub> es el número de casos "exitosos" en la iteración anterior (i-1). Finalmente, el criterio de eficiencia relativa global (REC)<sub>g</sub> para una prueba de discordancia se define mediante la siguiente ecuación:

$$(\text{REC})_{g} = \frac{\sum_{i=1}^{n} \text{ numero de casos "exitosos" en una iteración}}{\text{ numero inicial de casos "aplicables"}} \times 100$$
(A4)

donde el número de iteración i varía de 1 a n (siendo n la iteración final considerada para el cálculo del parámetro REC).

El parámetro global (REC)<sub>g</sub> considera todos los casos "exitosos" (en las pruebas sencillas, este número de casos "exitosos" es igual al número de datos discordantes identificados) de todas las iteraciones realizadas por una prueba determinada (incluyendo ambas variantes: más alto "Upper" y más bajo "Lower"). En otras palabras, para calcular el parámetro (REC)<sub>g</sub> de una prueba de discordancia se requiere conocer: (i) el número total de casos "exitosos" de la prueba, considerando todas las iteraciones que ésta realizó (en sus dos versiones); y, (ii) el número de casos (o muestras

estadísticas univariadas), a los cuales fue aplicada la prueba de discordancia en la primera iteración (en este trabajo, todas las pruebas fueron aplicadas a 2220 casos).

Por tanto, si una prueba de discordancia realiza dos iteraciones y sólo en la primera detecta datos desviados, el valor de  $(REC)_g$  es el mismo que  $(REC)_1$ :  $(REC)_g = (REC)_1$ . Sin embargo, si una prueba de discordancia detecta datos desviados en la primera y en la segunda iteración, se tiene que:  $(REC)_g > (REC)_1$ .

Por otro lado, cabe señalar que con la finalidad de considerar el parámetro REC estadísticamente válido, establecimos arbitrariamente el número 30 como el límite inferior de casos "aplicables". Esto implica que, por debajo de este límite, no se calculó ningún parámetro REC. Teóricamente, se considera que el valor esperado del parámetro REC debe aproximarse a cero, bajo la hipótesis nula (Ho) de que las muestras estadísticas univariadas fueron extraídas de una población normal, sin ningún tipo de contaminación "estadística". La hipótesis alterna (H<sub>1</sub>), puesta a prueba está relacionada con un modelo de contaminación, según el cual un dato extremo proviene de una distribución diferente (media desplazada, mayor desviación estándar, o ambas) que el resto de los datos en una muestra estadística determinada. Barnett y Lewis (1994) es una excelente referencia para obtener más detalles sobre estas hipótesis y modelos. Por último, enfatizamos que Verma (1998) aplicó las pruebas de discordancia a muestras estadísticas univariadas procedentes de un sólo grupo de métodos analíticos a un estricto nivel de confianza del 99%. La misma metodología fue usada en la presente evaluación.

# Resultados del criterio de eficiencia relativa REC calculado para las 14 categorías de pruebas de discordancia

Se presentan en las Figuras A1-A11 (además de las Figuras 1-3 en el texto principal) los resultados del cálculo del parámetro REC de todas las categorías de pruebas de discordancia. En todas las Figuras A1-A11 se emplea la misma escala en el eje "y" del parámetro REC, a fin de facilitar la comparación visual de cada una de las gráficas. Con el fin de evitar la repetición con el texto del artículo principal, no se presentarán mayores detalles sobre estas figuras.



Figura A1. Criterio de eficiencia relativa (REC) de las pruebas de discordancia de la categoría 1 (ver Tabla 1 para categorización). Las cinco pruebas de discordancia sencillas que integran la categoría 1 evalúan el dato más alto ("Upper"): N1U, N4U, N7U, N9U y N10U. Cada prueba de discordancia fue aplicada en cada iteración a un determinado número de casos: (a) Iteración 1 (2220 casos con  $n \ge 9$  datos para todas las pruebas); (b) Iteración 2 (568 casos para N1U; 569 casos para N4U; 440 casos para N7U; 467 casos N9U; y, 464 casos para N10U); (c) Iteración 3 (115 casos tanto para N1U como para N4U; 43 casos para N7U; 49 casos N9U; y, 40 casos para N10U); y (d) iteración 4 (32 casos tanto para N1U como para N4U; en esta iteración no se calculó el REC para las pruebas de discordancia N7U, N9U y N10U debido a que el número de casos aplicables fue menor a 30; restricción establecida para el cálculo del REC a fin de considerar sólo los números de casos aplicables estadísticamente representativos).





Figura A2. Criterio de eficiencia relativa (REC) de las pruebas de discordancia de la categoría 2 (ver Tabla 1 para categorización). La categoría 2 está compuesta por las siguientes cuatro pruebas de discordancia sencillas que evalúan el dato más pequeño ("Lower"): N1L, N4L, N9L y N10L. (a) Iteración 1 (2220 casos para todas las pruebas); (b) Iteración 2 (249 casos tanto para N1L como para N4L; 232 casos para N9L; y, 251 casos para N10L); y (c) Iteración 3 (37 casos tanto para N1L como para N4L; en esta tercera iteración no se calculó el REC para las pruebas de discordancia N9L y N10L porque el número de casos aplicables fue menor a 30).





Figura A3. Criterio de eficiencia relativa (REC) de las pruebas de la categoría 3 (ver Tabla 1 para categorización). La categoría 3 se compone de las siguientes pruebas de discordancia sencillas que avalúan si un dato extremo es discordante: N2 (tipo Grubbs), N8 (tipo Dixon), N14 (coeficiente de asimetría, en inglés "skewness") y N15 (coeficiente de exceso, en inglés "kurtosis"). (a) Iteración 1 (2220 casos aplicables); (b) Iteración 2 (709, 566, 610 y 757 casos para N2, N8, N14 y N15, respectivamente); (c) Iteración 3 (159, 69, 181 y 226 casos para N2, N8, N14 y N15, respectivamente); (d) Iteración 4 (no se calculó el REC para N2 y N8 porque el número de casos aplicables no fue representativo; 29 y 40 casos para N14 y N15, respectivamente).



Figura A4. Criterio de eficiencia relativa (REC) de la categoría 4 (ver Tabla 1 para categorización). Esta categoría está integrada por las pruebas sencillas N1, N4, N9 y N10, incluyendo sus dos versiones: más alto y más bajo. (a) Iteración 1 (2220 casos aplicables para todas las pruebas). (b) Iteración 2 (817 casos para N1; 818 casos para N4; 699 casos para N9; y, 715 casos para N10). (c) Iteración 3 (152 casos para las pruebas N1 y N4; en esta tercera iteración no se calculó el REC para N9 y N10 porque el número de casos aplicables no fue representativo).





Figura A5. Criterio de eficiencia relativa (REC) de la categoría 6 (ver Tabla 1 para categorización). Esta categoría está integrada por las pruebas de discordancia múltiples que evalúan los dos datos más altos: N3U2, N4U2, N11U2, N12U2 y N13U2. (a) Iteración 1 (2220 casos con  $n \ge 9$  datos para todas las pruebas de discordancia). (b) Iteración 2 (410 casos para N3U2; 635 casos para N4U2; 551 casos para N11U2; 580 casos para N12U2; y, 581 casos para N13U2). (c) Iteración 3 (66 casos para N3U2; 74 casos para N4U2; 34 casos para N11U2; 36 casos para N12U2; y, 29 casos para N13U2).



Figura A6. Criterio de eficiencia relativa (REC) de la categoría 7 (ver Tabla 1 para categorización). Esta categoría está integrada por las pruebas de discordancia múltiples que evalúan los dos datos más bajos: N3L2, N4L2, N11L2, N12L2 y N13L2. (a) Iteración 1 (2220 casos de aplicación con  $n \ge 9$ ). (b) Iteración 2 (189, 268, 237, 270 y 294 casos para N3L2, N4L2, N11L2, N12L2 y N13L2).





Figura A8. Criterio de eficiencia relativa (REC) de la categoría 9 (ver Tabla 1 para categorización). Esta categoría está integrada por las pruebas de discordancia múltiples que evalúan los tres datos más altos: N3U3 y N4U3. (a) Iteración 1 (las pruebas N3U3 y N4U3 fueron aplicadas a 2220 casos, fueron exitosas en la detección de datos desviados en 245 y 600 casos, respectivamente).



Figura A9. Criterio de eficiencia relativa (REC) de la categoría 10 (ver Tabla 1 para categorización). Esta categoría está integrada por las pruebas múltiples que evalúan los tres datos más bajos: N3L3 y N4L3. Iteración 1 (las pruebas N3L3 y N4L3 fueron aplicadas a 2220 casos y detectaron datos desviados en 106 y 255 casos, respectivamente).



Figura A10. Criterio de eficiencia relativa (REC) de la categoría 11 (ver Tabla 1 para categorización). Esta categoría está integrada por las pruebas de discordancia múltiples que evalúan los cuatro datos más altos: N3U4 y N4U4. Iteración 1 (las pruebas fueron aplicadas a 2220 casos; de los cuales, la prueba N3U4 fue exitosa en 557 casos y la prueba N4U4 en un número de casos significativamente mayor: 150).



Figura A11. Criterio de eficiencia relativa (REC) de la categoría 12 (ver Tabla 1 para categorización). Esta categoría está integrada por las pruebas de discordancia múltiples que evalúan los cuatro datos más bajos: N3L4 y N4L4. (a) Iteración 1 (las pruebas N3L4 y N4L4 obtuvieron 58 y 222 casos "exitosos", respectivamente, en 2220 casos de aplicación).

#### Ejemplo del cálculo del criterio de eficiencia relativa (REC)

En este apartado, se presenta un ejemplo del cálculo del parámetro REC usando un conjunto de casos, en particular, con un tamaño de muestra n = 16 de la base de datos. Inicialmente, se identificaron en la base de datos todos los casos que tienen este tamaño de muestra, en total se encontraron 102 casos (se presentan en la Tabla A1 en las primeras tres subcolumnas identificadas con el encabezado "Casos aplicables"). Por ejemplo, algunos casos "aplicables" son: BIR-1\_Co\_Gr5 – métodos nucleares, DTS-1\_SIO2\_Gr1 – métodos clásicos, DTS-1\_Sc\_Gr5 – métodos nucleares, DTS-1\_U\_Gr5 – métodos nucleares y G-2\_Ce\_Gr3 – métodos de fluorescencia de rayos-X.

Posteriormente, identificamos los casos "exitosos" de cada una de las 33 variantes de pruebas de discordancia en todas sus iteraciones. La Tabla A1 contiene una columna para cada variante de prueba (esto con el propósito de ilustrar mejor la aplicación de las pruebas en estos 102 casos aplicables). En dicha columna se muestran los casos "exitosos" obtenidos en la primera iteración de una prueba determinada (p.ej., la prueba tipo Grubbs N1U fue exitosa en la detección del dato discordante más alto sólo en 22 casos de 102 casos aplicables; algunos de estos casos "exitosos" son: DTS-1\_U\_Gr5, G-2\_Rb\_Gr4, W-1\_Sn\_Gr4 y W-1\_Gd\_Gr6; por lo tanto, para calcular el (REC)<sub>1</sub> de esta prueba se dividen los 22 casos "exitosos" entre los 102 casos "aplicables" y para obtener el porcentaje se multiplica el resultado por 100; 21.57%).

Asimismo, en la Tabla A1 se encuentran identificados aquellos casos en los cuales la prueba también fue exitosa en la segunda (identificados por el símbolo †) y tercera (identificados por el símbolo ‡). Por ejemplo, en la segunda iteración la prueba tipo Grubbs N1U fue exitosa únicamente en los casos W-1\_Sn\_Gr4 y W-1\_Gd\_Gr6; sin presentarse ningún caso exitoso en la tercera iteración.

Mientras tanto, la prueba del coeficiente de exceso o curtosis N15 fue exitosa no sólo en la primera y segunda iteración sino también en la tercera iteración (en los casos JB-1\_V\_Gr3 y JB-1\_La\_Gr6; identificados por el símbolo ‡).

| #  | Casos aplicables |                 |                 | Casos exitosos (nivel de confianza 99%) |               |                 |    |
|----|------------------|-----------------|-----------------|-----------------------------------------|---------------|-----------------|----|
|    |                  |                 |                 |                                         | N1U           | N1L             | N2 |
|    |                  |                 |                 |                                         |               |                 |    |
| 1  | BIR-1_Co_Gr5     | JB-3_Ga_Gr3     | JR-2_Hf_Gr5     | DTS-1_U_Gr5                             | BIR-1_Co_Gr5  | BIR-1_Co_Gr5    |    |
| 2  | DTS-1_SIO2_Gr1   | JB-3_Ba_Gr5     | JR-2_Lu_Gr5     | G-2_Rb_Gr4                              | DTS-1_Sc_Gr5  | DTS-1_Sc_Gr5    |    |
| 3  | DTS-1_Sc_Gr5     | JB-3_FE2O3T_Gr5 | JR-2_NA2O_Gr5   | JA-1_Lu_Gr6                             | G-2_Ce_Gr3 †  | DTS-1_U_Gr5     |    |
| 4  | DTS-1_U_Gr5      | JB-3_Hf_Gr5     | JR-2_Nd_Gr5     | JA-2_Th_Gr3                             | JA-1_Rb_Gr6   | G-2_Ce_Gr3      |    |
| 5  | G-2_Ce_Gr3       | JB-3_NA2O_Gr5   | JR-2_Rb_Gr5     | JA-2_Sc_Gr5                             | JA-2_U_Gr5    | G-2_Rb_Gr4      |    |
| 6  | G-2_Rb_Gr4       | JB-3_Yb_Gr5     | MRG-1_Cu_Gr8    | JB-1_La_Gr6                             | JB-1a_Sm_Gr5  | JA-1_Lu_Gr6     |    |
| 7  | G-2_Y_Gr4        | JF-1_Pb_Gr3     | NIM-D_MNO_Gr2   | JB-3_NA2O_Gr2                           | JG-1a_LOI_Gr1 | JA-2_Th_Gr3     |    |
| 8  | G-2_Ho_Gr5       | JF-1_Th_Gr5     | NIM-D_V_Gr2     | JB-3_FE2O3T_Gr5                         | JG-1a_K2O_Gr2 | JA-2_Sc_Gr5     |    |
| 9  | G-2_Rb_Gr6       | JF-2_FE2O3T_Gr3 | NIM-G_MNO_Gr3   | JF-1_Pb_Gr3                             | JG-1a_Ce_Gr5  | JA-2_U_Gr5      |    |
| 10 | JA-1_H2OM_Gr1    | JG-1a_LOI_Gr1   | NIM-G_Rb_Gr3    | JF-2_FE2O3T_Gr3                         | JG-1a_Ce_Gr6  | JB-1a_Sm_Gr5    |    |
| 11 | JA-1_Zn_Gr2      | JG-1a_K2O_Gr2   | NIM-L_Zn_Gr2    | JG-1_V_Gr3                              | JG-1a_Gd_Gr6  | JB-1_La_Gr6     |    |
| 12 | JA-1_Cs_Gr5      | JG-1a_Ce_Gr5    | NIM-L_Sr_Gr3    | JG-2_La_Gr5                             | JG-2_K2O_Gr2  | JB-3_NA2O_Gr2   |    |
| 13 | JA-1_Yb_Gr5      | JG-1a_Ce_Gr6    | NIM-N_Sr_Gr3    | JP-1_Cu_Gr3                             | JR-1_LOI_Gr1  | JB-3_FE2O3T_Gr5 |    |
| 14 | JA-1_Dy_Gr6      | JG-1a_Gd_Gr6    | NIM-N_MNO_Gr8   | JR-1_FE2O3T_Gr5                         | JR-2_Nd_Gr5   | JF-1_Pb_Gr3     |    |
| 15 | JA-1_La_Gr6      | JG-1a_Yb_Gr6    | NIM-P_Zn_Gr2    | NIM-N_Sr_Gr3                            | JR-2_Rb_Gr5   | JF-2_FE2O3T_Gr3 |    |
| 16 | JA-1_Lu_Gr6      | JG-1_K2O_Gr1    | RGM-1_Sm_Gr5    | NIM-P_Zn_Gr2                            | NIM-D_MNO_Gr2 | JG-1a_LOI_Gr1   |    |
| 17 | JA-1_Rb_Gr6      | JG-1_Cr_Gr2     | SY-2_AL2O3_Gr1  | SY-2_TIO2_Gr3                           | W-1_Yb_Gr6    | JG-1a_K2O_Gr2   |    |
| 18 | JA-2_LOI_Gr1     | JG-1_V_Gr3      | SY-2_Rb_Gr3     | SY-3_TIO2_Gr3                           | W-2_TIO2_Gr3  | JG-1a_Ce_Gr6    |    |
| 19 | JA-2_Th_Gr3      | JG-2_K2O_Gr2    | SY-2_TIO2_Gr3   | W-1_Sn_Gr4                              |               | JG-1a_Gd_Gr6    |    |
| 20 | JA-2_Ce_Gr5      | JG-2_Co_Gr5     | SY-3_FE2O3T_Gr2 | W-1_Dy_Gr6                              |               | JG-1_V_Gr3      |    |
| 21 | JA-2_Co_Gr5      | JG-2_La_Gr5     | SY-3_Sr_Gr2     | W-1_Gd_Gr6                              |               | JG-2_K2O_Gr2    |    |
| 22 | JA-2_Sc_Gr5      | JG-2_Sc_Gr5     | SY-3_TIO2_Gr3   | W-2_Yb_Gr5                              |               | JG-2_La_Gr5     |    |
| 23 | JA-2_U_Gr5       | JP-1_LOI_Gr1    | W-1_NA2O_Gr3    |                                         |               | JP-1_Cu_Gr3     |    |
| 24 | JA-3_Cu_Gr3      | JP-1_Cu_Gr3     | W-1_Sn_Gr4      |                                         |               | JR-1_LOI_Gr1    |    |
| 25 | JB-1a_Hf_Gr5     | JP-1_P2O5_Gr3   | W-1_Ce_Gr6      |                                         |               | JR-1_FE2O3T_Gr5 |    |
| 26 | JB-1a_Sm_Gr5     | JR-1_LOI_Gr1    | W-1_Dy_Gr6      |                                         |               | JR-2_Nd_Gr5     |    |
| 27 | JB-1_P2O5_Gr1    | JR-1_Cr_Gr5     | W-1_Gd_Gr6      |                                         |               | JR-2_Rb_Gr5     |    |
| 28 | JB-1_Li_Gr2      | JR-1_FE2O3T_Gr5 | W-1_Yb_Gr6      |                                         |               | NIM-D_MNO_Gr2   |    |
| 29 | JB-1_V_Gr3       | JR-1_La_Gr5     | W-2_TIO2_Gr3    |                                         |               | NIM-N_Sr_Gr3    |    |
| 30 | JB-1_La_Gr6      | JR-1_Lu_Gr5     | W-2_Yb_Gr5      |                                         |               | NIM-P_Zn_Gr2    |    |
| 31 | JB-1_P2O5_Gr8    | JR-I_Ta_Gr5     |                 |                                         |               | SY-2_TIO2_Gr3   |    |
| 32 | JB-2_Cu_Gr2      | JR-1_Nd_Gr6     |                 |                                         |               | SY-3_TIO2_Gr3   |    |
| 33 | JB-2_MGO_Gr2     | JR-1_Sm_Gr6     |                 |                                         |               | W-1_Sn_Gr4 †    |    |
| 34 | JB-2_Pr_Gr6      | JR-2_Cr_Gr3     |                 |                                         |               | W-1_Dy_Gr6      |    |
| 35 | JB-3_H2OM_Gr1    | JR-2_Th_Gr3     |                 |                                         |               | W-2_TIO2_Gr3    |    |
| 36 | JB-3_NA2O_Gr2    | JR-2_Cr_Gr5     |                 |                                         |               | W-2_Yb_Gr5      |    |
|    | 1                |                 | 1               |                                         |               |                 |    |

Tabla A1. Casos aplicables con tamaño de muestra n = 16 para ilustrar el cálculo del criterio de eficiencia relativa (REC).

| #  | Casos exitosos (nivel de confianza 99%) |             |             | Casos exitosos (nivel de confianza 99%) |               |      |  |
|----|-----------------------------------------|-------------|-------------|-----------------------------------------|---------------|------|--|
| #  | N3U2                                    | N3U3        | N3U4        | N3L2                                    | N3L3          | N3L4 |  |
| 1  | G-2_Rb_Gr4                              | SY-3_Sr_Gr2 | JA-1_Zn_Gr2 | G-2_Ce_Gr3 †                            | JB-1_Li_Gr2   |      |  |
| 2  | JA-1_Dy_Gr6                             |             |             | G-2_Rb_Gr6                              | JB-1_P2O5_Gr8 |      |  |
| 3  | JA-1_Lu_Gr6                             |             |             | JB-1a_Sm_Gr5                            | NIM-N_MNO_Gr8 |      |  |
| 4  | JA-2_Sc_Gr5                             |             |             | JG-1a_Gd_Gr6                            |               |      |  |
| 5  | JB-1_La_Gr6                             |             |             | JG-1a_Yb_Gr6                            |               |      |  |
| 6  | JF-2_FE2O3T_Gr3                         |             |             | NIM-N_MNO_Gr8                           |               |      |  |
| 7  | JR-1_FE2O3T_Gr5                         |             |             | W-2_TIO2_Gr3                            |               |      |  |
| 8  | JR-1_Ta_Gr5                             |             |             |                                         |               |      |  |
| 9  | JR-2_Th_Gr3                             |             |             |                                         |               |      |  |
| 10 | NIM-N_Sr_Gr3                            |             |             |                                         |               |      |  |
| 11 | SY-3_Sr_Gr2                             |             |             |                                         |               |      |  |
| 12 | W-1_Sn_Gr4                              |             |             |                                         |               |      |  |
| 13 | W-1_Ce_Gr6                              |             |             |                                         |               |      |  |
| 14 | W-1_Gd_Gr6                              |             |             |                                         |               |      |  |
| 15 |                                         |             |             |                                         |               |      |  |
| 16 |                                         |             |             |                                         |               |      |  |
| 17 |                                         |             |             |                                         |               |      |  |
| 18 |                                         |             |             |                                         |               |      |  |
| 19 |                                         |             |             |                                         |               |      |  |
| 20 |                                         |             |             |                                         |               |      |  |
| 21 |                                         |             |             |                                         |               |      |  |
| 22 |                                         |             |             |                                         |               |      |  |
| 23 |                                         |             |             |                                         |               |      |  |
| 25 |                                         |             |             |                                         |               |      |  |
| 25 |                                         |             |             |                                         |               |      |  |
| 20 |                                         |             |             |                                         |               |      |  |
| 28 |                                         |             |             |                                         |               |      |  |
| 29 |                                         |             |             |                                         |               |      |  |
| 30 |                                         |             |             |                                         |               |      |  |
| 31 |                                         |             |             |                                         |               |      |  |
| 32 |                                         |             |             |                                         |               |      |  |
| 33 |                                         |             |             |                                         |               |      |  |
| 34 |                                         |             |             |                                         |               |      |  |
| 35 |                                         |             |             |                                         |               |      |  |
| 36 |                                         |             |             |                                         |               |      |  |
|    |                                         |             |             |                                         |               |      |  |

#### Tabla A1. (Continuación)

| #        | Casos exitosos (nivel de confianza 99%) |                 |                 | Casos exitosos (nivel de confianza 99%) |               |               |  |  |
|----------|-----------------------------------------|-----------------|-----------------|-----------------------------------------|---------------|---------------|--|--|
| #        | N4U                                     | N4U2            | N4U3            | N4L4                                    | N4L           | N4L2          |  |  |
| 1        | DTS-1_U_Gr5                             | DTS-1_U_Gr5     | DTS-1_U_Gr5     | DTS-1_U_Gr5                             | BIR-1_Co_Gr5  | DTS-1_Sc_Gr5  |  |  |
| 2        | G-2_Rb_Gr4                              | G-2_Rb_Gr4      | G-2_Rb_Gr4      | G-2_Rb_Gr4                              | DTS-1_Sc_Gr5  | G-2_Ce_Gr3    |  |  |
| 3        | JA-1_Lu_Gr6                             | JA-1_Dy_Gr6     | JA-1_Lu_Gr6     | JA-1_Lu_Gr6                             | G-2_Ce_Gr3    | G-2_Rb_Gr6    |  |  |
| 4        | JA-2_Th_Gr3                             | JA-1_Lu_Gr6     | JA-2_Th_Gr3     | JA-2_Th_Gr3                             | JA-1_Rb_Gr6   | JA-2_U_Gr5    |  |  |
| 5        | JA-2_Sc_Gr5                             | JA-2_Th_Gr3     | JA-2_Sc_Gr5     | JA-2_Sc_Gr5                             | JA-2_U_Gr5    | JB-1a_Sm_Gr5  |  |  |
| 6        | JB-1_La_Gr6                             | JA-2_Sc_Gr5     | JB-1_La_Gr6     | JB-3_NA2O_Gr2                           | JB-1a_Sm_Gr5  | JG-1a_LOI_Gr1 |  |  |
| 7        | JB-3_NA2O_Gr2                           | JB-1_La_Gr6     | JB-3_NA2O_Gr2   | JB-3_FE2O3T_Gr5                         | JG-1a_LOI_Gr1 | JG-1a_K2O_Gr2 |  |  |
| 8        | JB-3_FE2O3T_Gr5                         | JB-3_NA2O_Gr2   | JB-3_FE2O3T_Gr5 | JF-1_Pb_Gr3                             | JG-1a_K2O_Gr2 | JG-1a_Ce_Gr6  |  |  |
| 9        | JF-1_Pb_Gr3                             | JB-3_FE2O3T_Gr5 | JF-1_Pb_Gr3     | JF-2_FE2O3T_Gr3                         | JG-1a_Ce_Gr5  | JG-1a_Gd_Gr6  |  |  |
| 10       | JF-2_FE2O3T_Gr3                         | JF-1_Pb_Gr3     | JF-2_FE2O3T_Gr3 | JG-2_La_Gr5                             | JG-1a_Ce_Gr6  | JG-1a_Yb_Gr6  |  |  |
| 11       | JG-1_V_Gr3                              | JF-2_FE2O3T_Gr3 | JG-2_La_Gr5     | JP-1_Cu_Gr3                             | JG-1a_Gd_Gr6  | JG-2_K2O_Gr2  |  |  |
| 12       | JG-2_La_Gr5                             | JG-1_V_Gr3      | JP-1_Cu_Gr3     | JR-1_FE2O3T_Gr5                         | JG-2_K2O_Gr2  | JR-1_LOI_Gr1  |  |  |
| 13       | JP-1_Cu_Gr3                             | JG-2_La_Gr5     | JR-1_FE2O3T_Gr5 | JR-1_Ta_Gr5                             | JR-1_LOI_Gr1  | JR-2_Nd_Gr5   |  |  |
| 14       | JR-1_FE2O3T_Gr5                         | JP-1_Cu_Gr3     | JR-1_Ta_Gr5     | NIM-P_Zn_Gr2                            | JR-2_Nd_Gr5   | JR-2_Rb_Gr5   |  |  |
| 15       | NIM-N_Sr_Gr3                            | JR-1_FE2O3T_Gr5 | NIM-N_Sr_Gr3    | SY-3_Sr_Gr2                             | JR-2_Rb_Gr5   | NIM-D_MNO_Gr2 |  |  |
| 16       | NIM-P_Zn_Gr2                            | JR-1_Ta_Gr5     | NIM-P_Zn_Gr2    | W-1_Sn_Gr4                              | NIM-D_MNO_Gr2 | NIM-N_MNO_Gr8 |  |  |
| 17       | SY-2_TIO2_Gr3                           | NIM-N_Sr_Gr3    | SY-2_TIO2_Gr3   | W-1_Gd_Gr6                              | W-1_Yb_Gr6    | W-2_TIO2_Gr3  |  |  |
| 18       | SY-3_TIO2_Gr3                           | NIM-P_Zn_Gr2    | SY-3_Sr_Gr2     |                                         | W-2_TIO2_Gr3  |               |  |  |
| 19       | W-1_Sn_Gr4 †                            | SY-2_TIO2_Gr3   | W-1_Sn_Gr4      |                                         |               |               |  |  |
| 20       | W-1_Dy_Gr6                              | SY-3_Sr_Gr2     | W-1_Dy_Gr6      |                                         |               |               |  |  |
| 21       | W-1_Gd_Gr6 †                            | SY-3_TIO2_Gr3   | W-1_Gd_Gr6      |                                         |               |               |  |  |
| 22       | W-2_Yb_Gr5                              | W-1_Sn_Gr4      |                 |                                         |               |               |  |  |
| 23       |                                         | W-1_Ce_Gr6      |                 |                                         |               |               |  |  |
| 24       |                                         | W-I_Dy_Gr6      |                 |                                         |               |               |  |  |
| 25       |                                         | W-1_Gd_Gr6      |                 |                                         |               |               |  |  |
| 26       |                                         | W-2_Yb_Gr5      |                 |                                         |               |               |  |  |
| 27       |                                         |                 |                 |                                         |               |               |  |  |
| 28       |                                         |                 |                 |                                         |               |               |  |  |
| 29       |                                         |                 |                 |                                         |               |               |  |  |
| 21       |                                         |                 |                 |                                         |               |               |  |  |
| 22       |                                         |                 |                 |                                         |               |               |  |  |
| 32<br>33 |                                         |                 |                 |                                         |               |               |  |  |
| 33       |                                         |                 |                 |                                         |               |               |  |  |
| 24<br>25 |                                         |                 |                 |                                         |               |               |  |  |
| 36       |                                         |                 |                 |                                         |               |               |  |  |
| 50       |                                         | I               | I               |                                         |               |               |  |  |
|          |                                         |                 |                 |                                         |               | I             |  |  |

Tabla A1. (Continuación)

| #  | Casos exitosos (nivel de confianza 99%) |               |                 | Casos exitosos (nivel de confianza 99%) |                 |                 |  |  |
|----|-----------------------------------------|---------------|-----------------|-----------------------------------------|-----------------|-----------------|--|--|
| #  | N4U3                                    | N4U4          | N5UL2           | N6UL2                                   | N7U             | N8              |  |  |
| 1  | DTS-1_Sc_Gr5                            | DTS-1_Sc_Gr5  | BIR-1_Co_Gr5    | BIR-1_Co_Gr5                            | DTS-1_U_Gr5     | BIR-1_Co_Gr5    |  |  |
| 2  | G-2_Ce_Gr3                              | G-2_Ce_Gr3    | DTS-1_Sc_Gr5    | JA-1_Dy_Gr6                             | G-2_Rb_Gr4      | DTS-1_Sc_Gr5    |  |  |
| 3  | JA-2_U_Gr5                              | JA-2_U_Gr5    | DTS-1_U_Gr5     | JA-1_Rb_Gr6                             | JA-1_Lu_Gr6     | DTS-1_U_Gr5     |  |  |
| 4  | JB-1a_Sm_Gr5                            | JB-1_P2O5_Gr8 | G-2_Ce_Gr3      | JB-1_V_Gr3                              | JA-2_Th_Gr3     | G-2_Rb_Gr4      |  |  |
| 5  | JB-1_P2O5_Gr8                           | JG-1a_LOI_Gr1 | G-2_Rb_Gr4      | JB-1_La_Gr6                             | JA-2_Sc_Gr5     | JA-1_Lu_Gr6     |  |  |
| 6  |                                         |               |                 |                                         |                 |                 |  |  |
|    | JG-1a_LOI_Gr1                           | JG-1a_K2O_Gr2 | JA-1_Dy_Gr6     | JG-1_K2O_Gr1                            | JB-3_NA2O_Gr2   | JA-2_Th_Gr3     |  |  |
| 7  | JG-1a_K2O_Gr2                           | JG-1a_Ce_Gr5  | JA-1_Lu_Gr6     | JG-1_V_Gr3                              | JB-3_FE2O3T_Gr5 | JA-2_Sc_Gr5     |  |  |
| 8  | JG-1a_Ce_Gr5                            | JG-1a_Ce_Gr6  | JA-1_Rb_Gr6     | JR-1_LOI_Gr1                            | JF-1_Pb_Gr3     | JA-2_U_Gr5      |  |  |
| 9  | JG-1a_Ce_Gr6                            | JG-1a_Gd_Gr6  | JA-2_Th_Gr3     | NIM-N_Sr_Gr3                            | JF-2_FE2O3T_Gr3 | JB-3_NA2O_Gr2   |  |  |
| 10 | JG-1a_Gd_Gr6                            | JG-1a_Yb_Gr6  | JA-2_Sc_Gr5     | W-1_Dy_Gr6                              | JG-2_La_Gr5     | JB-3_FE2O3T_Gr5 |  |  |
| 11 | JG-1a_Yb_Gr6                            | JR-2_Nd_Gr5   | JA-2_U_Gr5      |                                         | JP-1_Cu_Gr3     | JF-1_Pb_Gr3     |  |  |
| 12 | JG-2_K2O_Gr2                            | JR-2_Rb_Gr5   | JB-1_V_Gr3      |                                         | JR-1_FE2O3T_Gr5 | JF-2_FE2O3T_Gr3 |  |  |
| 13 | JR-1_LOI_Gr1                            | NIM-D_MNO_Gr2 | JB-1_La_Gr6 †   |                                         | NIM-P_Zn_Gr2    | JG-1a_LOI_Gr1   |  |  |
| 14 | JR-2_Nd_Gr5                             | NIM-N_MNO_Gr8 | JB-3_NA2O_Gr2   |                                         | SY-2_TIO2_Gr3   | JG-1a_Ce_Gr6    |  |  |
| 15 | JR-2_Rb_Gr5                             | W-1_Yb_Gr6    | JB-3_FE2O3T_Gr5 |                                         | SY-3_TIO2_Gr3   | JG-1a_Gd_Gr6    |  |  |
| 16 | NIM-D_MNO_Gr2                           | W-2_TIO2_Gr3  | JF-1_Pb_Gr3     |                                         | W-1_Dy_Gr6      | JG-2_K2O_Gr2    |  |  |
| 17 | NIM-N_MNO_Gr8                           |               | JF-2_FE2O3T_Gr3 |                                         | W-2_Yb_Gr5      | JG-2_La_Gr5     |  |  |
| 18 | W-1_Yb_Gr6                              |               | JG-1a_LOI_Gr1   |                                         |                 | JP-1_Cu_Gr3     |  |  |
| 19 | W-2_TIO2_Gr3                            |               | JG-1a_Ce_Gr6    |                                         |                 | JR-1_LOI_Gr1    |  |  |
| 20 |                                         |               | JG-1a_Gd_Gr6    |                                         |                 | JR-1_FE2O3T_Gr5 |  |  |
| 21 |                                         |               | JG-1_V_Gr3      |                                         |                 | JR-2_Nd_Gr5     |  |  |
| 22 |                                         |               | JG-2_La_Gr5     |                                         |                 | JR-2_Rb_Gr5     |  |  |
| 23 |                                         |               | JP-1_Cu_Gr3     |                                         |                 | NIM-D_MNO_Gr2   |  |  |
| 24 |                                         |               | JR-1_LOI_Gr1    |                                         |                 | NIM-P_Zn_Gr2    |  |  |
| 25 |                                         |               | JR-1_FE2O3T_Gr5 |                                         |                 | SY-2_TIO2_Gr3   |  |  |
| 26 |                                         |               | JR-2_Nd_Gr5     |                                         |                 | SY-3_TIO2_Gr3   |  |  |
| 27 |                                         |               | JR-2_Rb_Gr5     |                                         |                 | W-1_Dy_Gr6      |  |  |
| 28 |                                         |               | NIM-D_MNO_Gr2   |                                         |                 | W-2_TIO2_Gr3    |  |  |
| 29 |                                         |               | NIM-N_Sr_Gr3    |                                         |                 | W-2_Yb_Gr5      |  |  |
| 30 |                                         |               | NIM-P_Zn_Gr2    |                                         |                 |                 |  |  |
| 31 |                                         |               | SY-2_TIO2_Gr3   |                                         |                 |                 |  |  |
| 32 |                                         |               | SY-3_TIO2_Gr3   |                                         |                 |                 |  |  |
| 33 |                                         |               | W-1_Dy_Gr6      |                                         |                 |                 |  |  |
| 34 |                                         |               | W-2_TIO2_Gr3    |                                         |                 |                 |  |  |
| 35 |                                         |               | W-2_Yb_Gr5      |                                         |                 |                 |  |  |
| 36 |                                         |               |                 |                                         |                 |                 |  |  |
|    |                                         |               |                 |                                         |                 | <u> </u>        |  |  |

#### Tabla A1. (Continuación)

| #  | Casos exitosos (nivel de confianza 99%) |                | Casos exitosos (nivel de confianza 99%) |               |                 |               |
|----|-----------------------------------------|----------------|-----------------------------------------|---------------|-----------------|---------------|
| π  | N9U                                     | N9L            | N10U                                    | N10L          | N11U2           | N11L2         |
| 1  | DTS-1_U_Gr5                             | BIR-1_Co_Gr5   | DTS-1_U_Gr5                             | BIR-1_Co_Gr5  | DTS-1_U_Gr5     | BIR-1_Co_Gr5  |
| 2  | G-2_Rb_Gr4                              | DTS-1_Sc_Gr5   | G-2_Rb_Gr4 †                            | DTS-1_Sc_Gr5  | G-2_Rb_Gr4      | DTS-1_Sc_Gr5  |
| 3  | JA-1_Lu_Gr6                             | G-2_Ce_Gr3 †   | JA-1_Lu_Gr6                             | JA-1_Dy_Gr6   | JA-1_Lu_Gr6     | G-2_Ce_Gr3    |
| 4  | JA-2_Th_Gr3                             | JA-1_Rb_Gr6    | JA-2_Th_Gr3                             | JA-1_Rb_Gr6   | JA-2_Th_Gr3     | G-2_Rb_Gr6    |
| 5  | JA-2_Sc_Gr5                             | JA-2_U_Gr5     | JA-2_Sc_Gr5                             | JA-2_U_Gr5    | JA-2_Sc_Gr5     | JA-2_U_Gr5    |
| 6  | JB-1_La_Gr6 †                           | JG-1a_LOI_Gr1  | JB-1_La_Gr6 †                           | JB-1_V_Gr3    | JB-1_La_Gr6     | JB-1a_Sm_Gr5  |
| 7  | JB-3_NA2O_Gr2                           | JG-1a_Ce_Gr6   | JB-3_NA2O_Gr2                           | JB-1_La_Gr6   | JB-3_NA2O_Gr2   | JG-1a_LOI_Gr1 |
| 8  | JB-3_FE2O3T_Gr5                         | JG-1a_Gd_Gr6   | JB-3_FE2O3T_Gr5                         | JG-1a_LOI_Gr1 | JB-3_FE2O3T_Gr5 | JG-1a_K2O_Gr2 |
| 9  | JF-1_Pb_Gr3                             | JG-2_K2O_Gr2   | JF-1_Pb_Gr3                             | JG-1a_Ce_Gr6  | JF-1_Pb_Gr3     | JG-1a_Ce_Gr6  |
| 10 | JF-2_FE2O3T_Gr3                         | JR-1_LOI_Gr1   | JF-2_FE2O3T_Gr3                         | JG-1a_Gd_Gr6  | JF-2_FE2O3T_Gr3 | JG-1a_Gd_Gr6  |
| 11 | JG-1_V_Gr3                              | JR-2_Nd_Gr5    | JG-1_V_Gr3                              | JG-2_K2O_Gr2  | JG-1_V_Gr3      | JG-2_K2O_Gr2  |
| 12 | JG-2_La_Gr5                             | JR-2_Rb_Gr5    | JG-2_La_Gr5                             | JR-1_LOI_Gr1  | JG-2_La_Gr5     | JR-1_LOI_Gr1  |
| 13 | JP-1_Cu_Gr3                             | NIM-D_MNO_Gr2  | JP-1_Cu_Gr3                             | JR-2_Nd_Gr5   | P-1_Cu_Gr3      | JR-2_Nd_Gr5   |
| 14 | JR-1_FE2O3T_Gr5                         | W-2_TIO2_Gr3 † | JR-1_FE2O3T_Gr5                         | JR-2_Rb_Gr5   | JR-1_FE2O3T_Gr5 | JR-2_Rb_Gr5   |
| 15 | NIM-P_Zn_Gr2                            |                | NIM-N_Sr_Gr3                            | NIM-D_MNO_Gr2 | JR-1_Ta_Gr5     | NIM-D_MNO_Gr2 |
| 16 | SY-2_TIO2_Gr3                           |                | NIM-P_Zn_Gr2                            | W-2_TIO2_Gr3  | NIM-N_Sr_Gr3    | W-2_TIO2_Gr3  |
| 17 | SY-3_TIO2_Gr3                           |                | SY-2_TIO2_Gr3                           |               | NIM-P_Zn_Gr2    |               |
| 18 | W-1_Dy_Gr6                              |                | SY-3_TIO2_Gr3                           |               | SY-2_TIO2_Gr3   |               |
| 19 | W-2_Yb_Gr5                              |                | W-1_Dy_Gr6                              |               | SY-3_TIO2_Gr3   |               |
| 20 |                                         |                | W-2_Yb_Gr5                              |               | W-1_Sn_Gr4      |               |
| 21 |                                         |                |                                         |               | W-1_Ce_Gr6      |               |
| 22 |                                         |                |                                         |               | W-1_Dy_Gr6      |               |
| 23 |                                         |                |                                         |               | W-1_Gd_Gr6      |               |
| 24 |                                         |                |                                         |               | W-2_Yb_Gr5      |               |
| 25 |                                         |                |                                         |               |                 |               |
| 26 |                                         |                |                                         |               |                 |               |
| 27 |                                         |                |                                         |               |                 |               |
| 28 |                                         |                |                                         |               |                 |               |
| 29 |                                         |                |                                         |               |                 |               |
| 30 |                                         |                |                                         |               |                 |               |
| 31 |                                         |                |                                         |               |                 |               |
| 32 |                                         |                |                                         |               |                 |               |
| 33 |                                         |                |                                         |               |                 |               |
| 34 |                                         |                |                                         |               |                 |               |
| 35 |                                         |                |                                         |               |                 |               |
| 36 |                                         |                |                                         |               |                 |               |
|    |                                         |                |                                         |               |                 |               |

Tabla A1. (Continuación)

| #  | Casos exitosos (nivel de confianza 99%) |               |                 | Casos exitosos (nivel de confianza 99%) |                 |                 |  |
|----|-----------------------------------------|---------------|-----------------|-----------------------------------------|-----------------|-----------------|--|
| #  | N12U2                                   | N12L2         | N13U2           | N13L3                                   | N14             | N15             |  |
| 1  | DTS-1_U_Gr5                             | BIR-1_Co_Gr5  | DTS-1_U_Gr5     | BIR-1_Co_Gr5                            | DTS-1_U_Gr5     | BIR-1_Co_Gr5    |  |
| 2  | G-2_Rb_Gr4                              | DTS-1_Sc_Gr5  | G-2_Rb_Gr4      | DTS-1_Sc_Gr5                            | G-2_Rb_Gr4      | DTS-1_Sc_Gr5    |  |
| 3  | JA-1_Dy_Gr6                             | G-2_Ce_Gr3    | G-2_Rb_Gr6      | G-2_Ce_Gr3                              | JA-1_Lu_Gr6     | DTS-1_U_Gr5     |  |
| 4  | JA-1_Lu_Gr6                             | JA-1_Rb_Gr6   | JA-1_Dy_Gr6     | G-2_Rb_Gr6                              | JA-2_Th_Gr3     | G-2_Ce_Gr3      |  |
| 5  | JA-2_Th_Gr3                             | JA-2_U_Gr5    | JA-1_Lu_Gr6     | JA-1_Rb_Gr6                             | JA-2_Sc_Gr5     | G-2_Rb_Gr4      |  |
| 6  | JA-2_Sc_Gr5                             | JB-1a_Sm_Gr5  | JA-2_Th_Gr3     | JA-2_U_Gr5                              | JB-1_La_Gr6     | JA-1_Lu_Gr6     |  |
| 7  | JB-1_V_Gr3                              | JG-1a_LOI_Gr1 | JA-2_Sc_Gr5     | JB-1a_Sm_Gr5                            | JB-3_NA2O_Gr2   | JA-1_Rb_Gr6     |  |
| 8  | JB-1_La_Gr6                             | JG-1a_Ce_Gr6  | JB-1_V_Gr3      | JB-1_V_Gr3                              | JB-3_FE2O3T_Gr5 | JA-2_Th_Gr3     |  |
| 9  | JB-3_NA2O_Gr2                           | JG-1a_Gd_Gr6  | JB-1_La_Gr6     | JB-1_La_Gr6                             | JF-1_Pb_Gr3     | JA-2_Sc_Gr5     |  |
| 10 | JB-3_FE2O3T_Gr5                         | JG-2_K2O_Gr2  | JB-3_NA2O_Gr2   | JG-1a_LOI_Gr1                           | JF-2_FE2O3T_Gr3 | JA-2_U_Gr5      |  |
| 11 | JF-1_Pb_Gr3                             | JR-1_LOI_Gr1  | JB-3_FE2O3T_Gr5 | JG-1a_Ce_Gr6                            | JG-1_V_Gr3      | JB-1a_Sm_Gr5    |  |
| 12 | JF-2_FE2O3T_Gr3                         | JR-2_Nd_Gr5   | JF-1_Pb_Gr3     | JG-1a_Gd_Gr6                            | JG-2_La_Gr5     | JB-1_V_Gr3 ‡    |  |
| 13 | JG-1_V_Gr3                              | JR-2_Rb_Gr5   | JF-2_FE2O3T_Gr3 | JR-1_LOI_Gr1                            | JP-1_Cu_Gr3     | JB-1_La_Gr6 ‡   |  |
| 14 | JG-2_La_Gr5                             | NIM-D_MNO_Gr2 | JG-1_V_Gr3      | JR-2_Nd_Gr5                             | JR-1_FE2O3T_Gr5 | JB-3_NA2O_Gr2   |  |
| 15 | JP-1_Cu_Gr3                             | W-2_TIO2_Gr3  | JG-2_La_Gr5     | JR-2_Rb_Gr5                             | JR-1_Ta_Gr5 †   | JB-3_FE2O3T_Gr5 |  |
| 16 | JR-1_FE2O3T_Gr5                         |               | JP-1_Cu_Gr3     | NIM-D_MNO_Gr2                           | NIM-N_Sr_Gr3    | JF-1_Pb_Gr3     |  |
| 17 | JR-1_Ta_Gr5                             |               | JR-1_FE2O3T_Gr5 | NIM-N_Sr_Gr3                            | NIM-P_Zn_Gr2    | JF-2_FE2O3T_Gr3 |  |
| 18 | NIM-N_Sr_Gr3                            |               | JR-1_Ta_Gr5     | W-2_TIO2_Gr3                            | SY-2_TIO2_Gr3   | JG-1a_LOI_Gr1   |  |
| 19 | NIM-P_Zn_Gr2                            |               | NIM-N_Sr_Gr3 †  |                                         | SY-3_Sr_Gr2     | JG-1a_Ce_Gr6    |  |
| 20 | SY-2_TIO2_Gr3                           |               | NIM-P_Zn_Gr2    |                                         | SY-3_TIO2_Gr3   | JG-1a_Gd_Gr6    |  |
| 21 | SY-3_TIO2_Gr3                           |               | SY-2_TIO2_Gr3   |                                         | W-1_Sn_Gr4 †    | JG-1_V_Gr3      |  |
| 22 | W-1_Sn_Gr4                              |               | SY-3_TIO2_Gr3   |                                         | W-1_Dy_Gr6      | JG-2_K2O_Gr2    |  |
| 23 | W-1_Ce_Gr6                              |               | W-1_Sn_Gr4      |                                         | W-1_Gd_Gr6 †    | JG-2_La_Gr5     |  |
| 24 | W-1_Dy_Gr6                              |               | W-1_Ce_Gr6      |                                         | W-2_Yb_Gr5      | JP-1_Cu_Gr3     |  |
| 25 | W-1_Gd_Gr6                              |               | W-1_Dy_Gr6      |                                         |                 | JR-1_LOI_Gr1    |  |
| 26 | W-2_Yb_Gr5                              |               | W-1_Gd_Gr6      |                                         |                 | JR-1_FE2O3T_Gr5 |  |
| 27 |                                         |               | W-2_Yb_Gr5      |                                         |                 | JR-2_Nd_Gr5     |  |
| 28 |                                         |               |                 |                                         |                 | JR-2_Rb_Gr5     |  |
| 29 |                                         |               |                 |                                         |                 | NIM-D_MNO_Gr2   |  |
| 30 |                                         |               |                 |                                         |                 | NIM-N_Sr_Gr3    |  |
| 31 |                                         |               |                 |                                         |                 | NIM-P_Zn_Gr2    |  |
| 32 |                                         |               |                 |                                         |                 | SY-2_TIO2_Gr3   |  |
| 33 |                                         |               |                 |                                         |                 | SY-3_TIO2_Gr3   |  |
| 34 |                                         |               |                 |                                         |                 | W-1_Sn_Gr4 †    |  |
| 35 |                                         |               |                 |                                         |                 | W-1_Dy_Gr6      |  |
| 36 |                                         |               |                 |                                         |                 | W-1_Gd_Gr6 †    |  |
| 37 |                                         |               |                 |                                         |                 | W-2_TIO2_Gr3    |  |
| 38 |                                         |               |                 |                                         |                 | W-2_Yb_Gr5      |  |

Tabla A1. (Continuación)

Abreviaturas para grupos de métodos analíticos (Gr1 a Gr8): Gr1 – métodos clásicos; Gr2 – métodos de absorción atómica; Gr3 – métodos de fluorescencia de rayos-X; Gr4 – métodos de espectrometría de emisión; Gr5 – métodos nucleares; Gr6 – métodos de espectrometría de masas; Gr7 – métodos de cromatografía; Gr8 – miscelánea de métodos. Mayores detalles puede ser consultados en Velasco-Tapia *et al.* (2001). Las pruebas de discordancia para algunos casos "exitosos" también detectaron datos desviados en una segunda (identificadas por el símbolo  $\ddagger$ ) y tercera (identificadas por el símbolo  $\ddagger$ ).

#### Parámetro de evaluación del porcentaje de datos desviados o discordantes (%Ot)

Es conveniente destacar que el parámetro REC no es sinónimo de %Ot (%otd en Verma 1997 o % $O_t$  en Velasco-Tapia *et al.* 2001). El parámetro (%Ot)<sub>Gr</sub> para un determinado grupo de métodos analíticos de un material de referencia se expresa de la siguiente manera:

$$(\%Ot)_{Gr} = \frac{n \acute{u}mero total de datos discordantes en un caso "aplicable"}{numero total de datos iniciales en este caso "aplicable"} \times 100$$
(A5)

El parámetro %*Ot* para un elemento de un material de referencia en una base de datos completa puede ser similarmente definido como:

$$\%Ot = \frac{n \text{úmero total de datos discordantes en un caso "combinado"}}{n \text{umero total de datos iniciales en este caso "combinado"}} \times 100$$
(A6)

Un caso "combinado" se refiere a todos los datos analíticos de un elemento en un material de referencia, obtenidos de todos los métodos analíticos.

La mayor distinción entre el REC y el parámetro %*Ot* es que el primero es referido a todos los casos "aplicables" mientras que en el segundo a un sólo caso "aplicable" en particular, tanto para una sólo grupo de métodos (aquí referido como (%*Ot*)<sub>Gr</sub>) o para un caso "combinado" de todos los grupos de métodos (simplemente llamado %*Ot*). El parámetro REC puede ser calculado únicamente si se tiene un número representativo de casos aplicables (Ecs. A1-A4) mientras que el parámetro %*Ot* para cualquier caso "aplicable" o "combinado" (Ecs. A5-A6) generalmente se considera significativo.

#### Ejemplos del cálculo del porcentaje de datos desviados o discordantes (%Ot)Gr

A continuación, se presentan catorce muestras con tamaño n=16 seleccionadas de la Tabla A1 para ilustrar el cálculo del porcentaje de datos desviados (%Ot)<sub>Gr</sub>. En la Tabla A2 se muestra un resumen de la aplicación de todas las pruebas de discordancia a estos casos de ejemplo.

Tabla A2. Resumen de la aplicación de todas las pruebas de discordancia a los catorce casos seleccionados como ejemplos para ilustrar el cálculo del porcentaje de datos desviados.

| #  | Case           | (n <sub>in</sub> ) <sub>Gr</sub> | (X <sub>in</sub> ) <sub>Gr</sub> | (s <sub>in</sub> ) <sub>Gr</sub> | (Ot) <sub>Gr</sub> | $(\% Ot)_{\rm Gr}$ | ( <b>n</b> <sub>f)</sub> | (X <sub>f</sub> ) <sub>Gr</sub> | (s <sub>f</sub> ) <sub>Gr</sub> |
|----|----------------|----------------------------------|----------------------------------|----------------------------------|--------------------|--------------------|--------------------------|---------------------------------|---------------------------------|
| 1  | BIR-1_Co_Gr5   | 16                               | 51.906                           | 5.819                            | 3                  | 18.8               | 13                       | 52.731                          | 2.830                           |
| 2  | DTS-1_Sc_Gr5   | 16                               | 3.361                            | 0.688                            | 5                  | 31.3               | 11                       | 3.571                           | 0.208                           |
| 3  | DTS-1_U_Gr5    | 16                               | 0.004                            | 0.002                            | 5                  | 31.3               | 11                       | 0.003                           | 0.000                           |
| 4  | G-2_Ce_Gr3     | 16                               | 164.313                          | 20.630                           | 5                  | 31.3               | 11                       | 171.364                         | 4.744                           |
| 5  | G-2_Rb_Gr4     | 16                               | 200.500                          | 91.813                           | 6                  | 37.5               | 10                       | 176.000                         | 11.662                          |
| 6  | JA-1_Lu_Gr6    | 16                               | 0.466                            | 0.064                            | 5                  | 31.3               | 11                       | 0.442                           | 0.019                           |
| 7  | MRG-1_Cu_Gr8   | 16                               | 141.813                          | 23.224                           | 0                  | 0                  | 16                       | 141.81                          | 23.22                           |
| 8  | NIM-L_Sr_Gr3   | 16                               | 4374.813                         | 586.271                          | 0                  | 0                  | 16                       | 4374.8                          | 586.3                           |
| 9  | NIM-L_Zn_Gr2   | 16                               | 384.500                          | 139.348                          | 0                  | 0                  | 16                       | 384.5                           | 139.3                           |
| 10 | JA-2_Co_Gr5    | 16                               | 29.819                           | 1.365                            | 0                  | 0                  | 16                       | 29.819                          | 1.365                           |
| 11 | JA-2_Sc_Gr5    | 16                               | 19.745                           | 2.497                            | 5                  | 31.3               | 11                       | 18.875                          | 0.843                           |
| 12 | SY-2_AL2O3_Gr1 | 16                               | 11.951                           | 0.221                            | 0                  | 0                  | 16                       | 11.951                          | 0.221                           |
| 13 | W-1_Ce_Gr6     | 16                               | 22.556                           | 4.240                            | 2                  | 12.5               | 14                       | 21.279                          | 2.517                           |
| 14 | W-2_Yb_Gr5     | 16                               | 2.103                            | 0.149                            | 3                  | 19                 | 13                       | 2.0754                          | 0.077                           |

Como se puede observar, en la séptima columna de la Tabla A2 se presenta el porcentaje de datos desviados  $(\% Ot)_{Gr}$  calculado a partir del número de datos discordantes identificados  $(Ot)_{Gr}$  por las pruebas de discordancia.

A continuación se presenta información más detallada sobre la detección de los datos discordantes en cada caso: BIR-1 Co Gr5 ((%Ot)<sub>Gr</sub> = 18.8; los dos valores más pequeños y el valor más grande fueron identificados como datos discordantes por las pruebas: N1L, N2, N4L, N5UL, N6UL, N8, N9L, N10L, N11L2, N12L2, N13L2 y N15); DTS-1 Sc Gr5 ((%Ot)<sub>Gr</sub> = 31.3; los cuatro valores más pequeños y el valor más grande se identificaron como datos desviados por las pruebas: N1L, N2, N4L, N4L2, N4L3, N4L4, N5UL, N8, N9L, N10L, N11L2, N12L2, N13L2 y N15); DTS-1 U Gr5 ((%Ot)<sub>Gr</sub> = 31.3; cinco datos desviados: el dato más pequeño y los cuatro valores más grandes; N1U, N2, N4U, N4U2, N4U3, N4U4, N5UL, N7U, N8, N9U, N10U, N11U2, N12U2, N13U2, N14 y N15); G-2 Ce Gr3 ((%Ot)<sub>Gr</sub> = 31.3; cinco datos desviados: los cuatro valores más pequeños y el valor más grande; N1L, N2, N3L2, N4L, N4L2, N4L3, N4L4, N5UL, N9L, N11L2, N12L2, N13L2 y N15); G-2 Rb Gr4 ((%Ot)<sub>Gr</sub> = 37.5; seis datos desviados: los cuatro valores más pequeños y los dos valores más grande; N1U, N2, N3U2, N4U, N4U2, N4U3, N4U4, N5UL, N7U, N8, N9U, N10U, N11U2, N12U2, N13U2, N14 y N15) JA-1 Lu Gr6 ((%Ot)<sub>Gr</sub> = 31.3; cinco datos desviados: el valor más pequeño y los cuatro valores más grandes; N1U, N2, N3U2, N4U, N4U2, N4U3, N4U4, N5UL, N7U, N8, N9U, N10U, N11U2, N12U2, N13U2, N14 y N15); JA-2 Sc Gr5  $((\% Ot)_{Gr} = 31.3;$  cinco datos desviados: el valor más pequeño y los cuatro valores más grandes; N1U, N2, N3U2, N4U, N4U2, N4U3, N4U4, N5UL, N7U, N8, N9U, N10U, N11U2, N12U2, N13U2, N14 y N15); W-1 Ce Gr6 ((%Ot)<sub>Gr</sub> = 12.5; los dos datos más grandes fueron identificados como datos discordantes por las pruebas: N3U2, N4U2, N11U2, N12U2 y N13U2); W-2\_Yb\_Gr5 ((%Ot)<sub>Gr</sub> = 18.8; tres datos desviados: el dato más pequeño y los dos valores más grandes; N1U, N2, N4U, N4U2, N5UL, N7U, N8, N9U, N10U, N11U2, N12U2, N13U2, N14 y N15); y finalmente, en los casos: JA-2\_Co\_Gr5, MRG-1\_Cu\_Gr8, NIM-L\_Sr\_Gr3 y NIM-L\_Zn\_Gr2 no se detectaron datos desviados y por tanto el porcentaje de datos desviados calculado es igual a cero ((%Ot)<sub>Gr</sub> = 0).

#### Resultados del criterio relativo de datos discordantes (ROC)

El parámetro ROC permite estimar el número de datos que una prueba de discordancia detecta y rechaza en una muestra estadística, en función de datos totales. En la Figura A15 se presentan los valores del parámetro ROC calculados para las pruebas que evalúan los datos: (a) más altos; (b) más bajos; y, (c) extremos. El parámetro ROC se obtiene de dividir el número de datos discordantes identificados por una determinada prueba entre el número total de datos (41,821 datos) que contienen los 2220 casos a los cuales fue aplicada dicha prueba.





Figura A12. Criterio relativo de datos discordantes (ROC). (a) Pruebas de discordancia sencillas y múltiples que evalúan el(los) dato(s) más alto(s): N1U, N3U2, N3U3, N3U4, N4U, N4U2, N4U3, N4U4, N7U, N9U, N10U, N11U2, N12U2 y N13U2. (b) Pruebas de discordancia sencillas y múltiples que evalúan el(los) dato(s) más bajo(s): N1L, N3L2, N3L3, N3L4, N4L, N4L2, N4L3, N4L4, N9L, N10L, N11L2, N12L2 y N13L2. (c) Pruebas de discordancia sencillas y múltiples que evalúan el(los) dato(s) extremo(s): N2, N5UL2, N6UL2, N8, N14 y N15.

# Resultados de la correlación lineal entre el criterio de eficiencia relativa de la primera iteración $(REC)_1$ o de todas las iteraciones $(REC)_g$ y el tamaño de la muestra estadística

En las Figuras A13 y A14, se presentan las correlaciones lineales entre el  $(REC)_1$  y el tamaño de las muestras estadísticas formados a partir de la base de datos. De manera similar, los resultados para  $(REC)_g$  se dan a conocer en las Figuras A15 y A16.



Figura A13. Criterio de eficiencia relativa de la primera iteración (REC)<sub>1</sub> versus el tamaño (n) del grupo o caso. Se presentan las pruebas de discordancia agrupadas por categoría con el propósito de facilitar la comparación visual del parámetro (REC)<sub>1</sub>: (a) categoría 1 (N1U, N4U, N7U, N9U y N10U); (b) categoría 2 (N1L, N4L, N9L, N10UL); (c) categoría 3 (N2, N8, N14 y N15); (d) categoría 4 (N1, N4, N9 y N10; con ambas versiones: más alto y más bajo); (e) categoría 6 (N3U2, N4U2, N11U2, N12U2 y N13U2); y, (f) categoría 7 (N3L2, N4L2, N11L2, N12L2 y N13L2).





Figura A14. Criterio de eficiencia relativa de la primera iteración (REC)<sub>1</sub> versus el tamaño (n) del grupo o caso. Se presentan las pruebas de discordancia agrupadas por categoría con el propósito de facilitar la comparación visual del parámetro (REC)<sub>1</sub>: (g) categoría 8 (N5UL2 y N6UL2); (h) categoría 9 (N3U3 y N4U3); (i) categoría 10 (N3L3 y N4L3); (j) categoría 11 (N3U4 y N4U4); y, (k) categoría 12 (N3L4 y N4L4).



Figura A15. Criterio de eficiencia relativa global (REC)<sub>g</sub> versus el tamaño (n) del grupo o caso. Se presentan las pruebas de discordancia agrupadas por categoría con el propósito de facilitar la comparación visual del parámetro (REC)<sub>g</sub>: (a) categoría 1 (N1U, N4U, N7U, N9U y N10U); (b) categoría 2 (N1L, N4L, N9L, N10UL); (c) categoría 3 (N2, N8, N14 y N15); (d) categoría 4 (N1, N4, N9 y N10; con ambas versiones: más alto y más bajo); (e) categoría 6 (N3U2, N4U2, N11U2, N12U2 y N13U2); y, (f) categoría 7 (N3L2, N4L2, N11L2, N12L2 y N13L2).





Figura A16. Criterio de eficiencia relativa de la primera iteración  $(REC)_g$  versus el tamaño (n) del grupo o caso. Se presentan las pruebas de discordancia agrupadas por categoría con el propósito de facilitar la comparación visual del parámetro  $(REC)_g$ : (g) categoría 8 (N5UL2 y N6UL2); (h) categoría 9 (N3U3 y N4U3); (i) categoría 10 (N3L3 y N4L3); (j) categoría 11 (N3U4 y N4U4); y, (k) categoría 12 (N3L4 y N4L4).