Zeolite assemblages from Northern Patagonian Andes, Argentina: A review

  • Pablo Rodrigo Leal
  • María Elena Vattuone
  • Carlos Oscar Latorre
Keywords: zeolites, low-grade metamorphism, metabasites, hydrothermal alteration, Northern Patagonian Andes, Argentina


In this work very low-grade metamorphic assemblages found in the Northern Patagonian Andes (Argentina) are summarized. On the basis of previous studies, several occurrences of zeolites have been delimited. According to their mineralogy, textures and structures, three different alteration stages that evidence a progressive decrease in temperature have been established. The first one (stage I) was the consequence of an event of regional metamorphism that reached the greenschist facies (350 °C and 2 kbar). During this stage, pyroxene, amphibole and feldspar primary phenocrysts broke down to produce an assemblage of actinolite, grossular-andradite, chlorite, albite, prehnite, titanite, clinozoisite, epidote and calcite. In the subsequent stages, direct hydrothermal precipitation took place as the temperature decreased. Thus, zeolites, calc-silicates, calcite, quartz and cristobalite started to precipitate as cavity fillings. During stage II, temperature decreased below 220 °C and wairakite, yugawaralite, laumontite, pectolite, dachiardite, celadonite, thomsonite, pumpellyite and interstratified chlorite/smectite crystallized. Prehnite, adularia, titanite and albite were also deposited but only as minor species. These minerals mainly alter feldspar phenocrysts and fill amygdules of basalts and andesites. Stage III is characterized by a temperature drop (below 180 °C) and by the crystallization of hydrothermal secondary minerals within open spaces. Most of the alkaline zeolites were deposited during this last event of alteration, filling joints in metabasites and granitoids. Although Ca-stilbite is the most abundant alteration mineral, analcime, natrolite, barrerite, offretite, chabazite, stellerite, heulandite, mordenite, scolecite, mesolite, quartz, calcite, cristobalite and smectites were also produced.